Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations

Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA 95616, USA.
The Journal of General Physiology (Impact Factor: 4.57). 03/2012; 139(4):273-83. DOI: 10.1085/jgp.201110724
Source: PubMed

ABSTRACT The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activation pathway are debated. To address these fundamental issues, we searched for channel mutations that selectively affected one form of activation. We found that deletion of the first 10 amino acids of the pore turret significantly reduced the heat response amplitude and shifted the heat activation threshold, whereas capsaicin activation remained unchanged. Removing larger portions of the turret disrupted channel function. Introducing an artificial sequence to replace the deleted region restored sensitive capsaicin activation in these nonfunctional channels. The heat activation, however, remained significantly impaired, with the current exhibiting diminishing heat sensitivity to a level indistinguishable from that of a voltage-gated potassium channel, Kv7.4. Our results demonstrate that heat and capsaicin activation of TRPV1 are structurally and mechanistically distinct processes, and the pore turret is an indispensible channel structure involved in the heat activation process but is not part of the capsaicin activation pathway. Synergistic effect of heat and capsaicin on TRPV1 activation may originate from convergence of the two pathways on a common activation gate.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Transient receptor potential (TRP) ion channels are eukaryotic polymodal sensors that function as molecular cellular signal integrators. TRP family members sense and are modulated by a wide array of inputs including: temperature, pressure, pH, voltage, chemicals, lipids, and other proteins. These inputs induce signal transduction events mediated by non-selective cation passage through TRP channels. In this review we focus on the thermosensitive TRP channels and highlight the emerging view that these channels play a variety of significant roles in physiology and pathophysiology in addition to sensory biology. We attempt to use this viewpoint as a framework to understand the complexity and controversy of TRP channel modulation and ultimately suggest that the complex functional behavior arises inherently because this class of protein is exquisitely sensitive to many diverse and distinct signal inputs. To illustrate this idea we primarily focus on the TRP channel thermosensing. We also offer a structural, biochemical, biophysical, and computational perspective that may help to bring more coherence and consensus in understanding the function of this important class of proteins.
    Biochemistry 03/2015; DOI:10.1021/acs.biochem.5b00071 · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: TRPV1 has been shown to alter its ionic selectivity profile in a time- and agonistdependent manner. One hallmark of this dynamic process is an increased permeability to large cations such as N-methyl-D-glucamine (NMDG). In this study, we mutated residues throughout the TRPV1 pore domain to identify loci that contribute to dynamic large cation permeability. Using resiniferatoxin (RTX) as the agonist, we identified multiple gain-offunction substitutions within the TRPV1 pore turret (N628P, S629A), pore helix (F638A), and selectivity filter (M644A) domains. In all of these mutants, maximum NMDG permeability was substantially greater than that recorded in wild type TRPV1, despite similar or even reduced sodium current density. Two additional mutants, located in the pore turret (G618W) and selectivity filter (M644I), resulted in significantly reduced maximum NMDG permeability. M644A and M644I also showed increased and decreased minimum NMDG permeability, respectively. The phenotypes of this panel of mutants were confirmed by imaging the RTX-evoked uptake of the large cationic fluorescent dye YO-PRO1. Whereas none of the mutations selectively altered capsaicin-induced changes in NMDG permeability, the loss of function phenotypes seen with RTX stimulation of G618W and M644I were recapitulated in the capsaicin evoked YO-PRO1 uptake assay. Curiously, the M644A substitution resulted in a loss, rather than a gain, in capsaicin-evoked YO-PRO1 uptake. Modeling of our mutations onto the recently determined TRPV1 structure revealed several plausible mechanisms for the phenotypes observed. We conclude that side chain interactions at a few specific loci within the TRPV1 pore contribute to the dynamic process of ionic selectivity.
    Journal of Biological Chemistry 01/2015; DOI:10.1074/jbc.M114.597435 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nicotinic acid (NA, a.k.a. vitamin B3 or niacin) can reduce blood cholesterol and low-density lipoproteins whereas increase high-density lipoproteins. However, when NA is used to treat dyslipidemias, it causes a strong side effect of cutaneous vasodilation, commonly called flushing. A recent study showed that NA may cause flushing by lowering activation threshold temperature of the heat-sensitive capsaicin receptor TRPV1 ion channel, leading to its activation at body temperature. The finding calls into question whether NA might also interact with the homologous heat-sensitive TRPV2-4 channels, particularly given that TRPV3 and TRPV4 are abundantly expressed in keratinocytes of the skin where much of the flushing response occurs. We found that NA indeed potentiated TRPV3 while inhibited TRPV2 and TRPV4. Consistent with these gating effects, NA lowered the heat-activation threshold of TRPV3 but elevated that of TRPV4. We further found that activity of TRPV1 was substantially prolonged by extracellular NA, which may further enhance the direct activation effect. Consistent with the broad gating effect on TRPV1-4 channels, evidence from the present study hints that NA may share the same activation pathway as 2-aminoethoxydiphenyl borate (2-APB), a common agonist for these TRPV channels. These findings shed new light on the molecular mechanism underlying NA regulation of TRPV channels.

Full-text (2 Sources)

Available from
May 16, 2014