Article

A sulfated carbohydrate epitope inhibits axon regeneration after injury.

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.74). 03/2012; 109(13):4768-73. DOI: 10.1073/pnas.1121318109
Source: PubMed

ABSTRACT Chondroitin sulfate proteoglycans (CSPGs) represent a major barrier to regenerating axons in the central nervous system (CNS), but the structural diversity of their polysaccharides has hampered efforts to dissect the structure-activity relationships underlying their physiological activity. By taking advantage of our ability to chemically synthesize specific oligosaccharides, we demonstrate that a sugar epitope on CSPGs, chondroitin sulfate-E (CS-E), potently inhibits axon growth. Removal of the CS-E motif significantly attenuates the inhibitory activity of CSPGs on axon growth. Furthermore, CS-E functions as a protein recognition element to engage receptors including the transmembrane protein tyrosine phosphatase PTPσ, thereby triggering downstream pathways that inhibit axon growth. Finally, masking the CS-E motif using a CS-E-specific antibody reversed the inhibitory activity of CSPGs and stimulated axon regeneration in vivo. These results demonstrate that a specific sugar epitope within chondroitin sulfate polysaccharides can direct important physiological processes and provide new therapeutic strategies to regenerate axons after CNS injury.

0 Bookmarks
 · 
107 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Brain and spinal cord injury can result in permanent cognitive, motor, sensory and autonomic deficits. The central nervous system (CNS) has a poor intrinsic capacity for regeneration, although some functional recovery does occur. This is mainly in the form of sprouting, dendritic remodelling and changes in neuronal coding, firing and synaptic properties; elements collectively known as plasticity. An important approach to repair the injured CNS is therefore to harness, promote and refine plasticity. In the adult, this is partly limited by the extracellular matrix (ECM). While the ECM typically provides a supportive framework to CNS neurones, its role is not only structural; the ECM is homeostatic, actively regulatory and of great signalling importance, both directly via receptor or coreceptor-mediated action and via spatially and temporally relevant localization of other signalling molecules. In an injury or disease state, the ECM represents a key environment to support a healing and/or regenerative response. However, there are aspects of its composition which prove suboptimal for recovery: some molecules present in the ECM restrict plasticity and limit repair. An important therapeutic concept is therefore to render the ECM environment more permissive by manipulating key components, such as inhibitory chondroitin sulphate proteoglycans. In this review we discuss the major components of the ECM and the role they play during development and following brain or spinal cord injury and we consider a number of experimental strategies which involve manipulations of the ECM, with the aim of promoting functional recovery to the injured brain and spinal cord.
    Neuropathology and Applied Neurobiology 02/2014; 40(1):26-59. · 4.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Carbohydrates are key participants in many biological processes including reproduction, inflammation, signal transmission and infection. Their biocompatibility and ability to be recognized by cell-surface receptors illustrate their potential therapeutic applications. Yet, they are not ideal candidates because they are complex and tedious to synthesize. However, recent advances in the field of polymer science and nanotechnology have led to the design of biologically relevant carbohydrate mimics for therapeutic uses. This review focuses mainly on the therapeutic potential of glycopolymers and glyconanoparticles (GNPs). Areas covered: The significance of engineered glycopolymers and GNPs as nanomedicine is highlighted in areas such as targeted drug delivery, gene therapy, signal transduction, vaccine development, protein stabilization and anti-adhesion therapy. Expert opinion: Major effort should be focused towards the design and synthesis of more complex and biologically relevant carbohydrate mimics in order to have a better understanding of the carbohydrate-carbohydrate and carbohydrate-protein interactions. The full therapeutic potential of these carbohydrate-based polymeric and nanoparticles systems can be achieved once the pivotal participation of the carbohydrates in biological systems is clarified.
    Expert Opinion on Drug Delivery 03/2014; · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carbohydrates fulfil many common as well as extremely important functions in nature. They show a variety of molecular displays - e.g., free mono-, oligo-, and polysaccharides, glycolipids, proteoglycans, glycoproteins, etc. - with particular roles and localizations in living organisms. Structure-specific peculiarities are so many and diverse that it becomes virtually impossible to cover them all from an analytical perspective. Hence this manuscript, focused on mammalian glycosylation, rather than a complete list of analytical descriptors or recognized functions for carbohydrate structures, comprehensively reviews three central issues in current glycoscience, namely (i) structural analysis of glycoprotein glycans, covering both classical and novel approaches for teasing out the structural puzzle as well as potential pitfalls of these processes; (ii) an overview of functions attributed to carbohydrates, covering from monosaccharide to complex, well-defined epitopes and full glycans, including post-glycosylational modifications, and (iii) recent technical advances allowing structural identification of glycoprotein glycans with simultaneous assignation of biological functions.
    The Analyst 04/2014; · 4.23 Impact Factor

Full-text (2 Sources)

View
24 Downloads
Available from
May 27, 2014