Article

From methylene blue to chloroquine: a brief review of the development of an antimalarial therapy.

Department of Pathology, University of Minnesota School of Medicine, Duluth, MN, USA.
Parasitology Research (Impact Factor: 2.85). 03/2012; 111(1):1-6. DOI: 10.1007/s00436-012-2886-x
Source: PubMed

ABSTRACT Malarial treatment is widely and readily available today. However, there was a time in the not-so-distant past when malaria was a deadly disease with no known cause or cure. In this article, we trace the origins of an antimalarial therapy from the discovery of the nature of the malarial parasite through the development of chloroquine. We dedicate this article to Johann "Hans" Andersag, the scientist who developed chloroquine, on the 110th anniversary of his birth, 16 February 1902.

6 Bookmarks
 · 
2,583 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The intolerable burden of malaria, when faced with high levels of drug resistance, increasing insecticide resistance and meagre resources at the national level, remains a great public health challenge to governments and the research/control community. Efficient control methods against the vectors of malaria are desperately needed. Control strategies for malaria that integrate the transfer of sterile sperm by released males to wild virgin females with other control tactics are currently being developed, and optimised mass-rearing, irradiation and release techniques are being validated in several field sites. However, the success of this strategy as part of wider pest control or health management programmes strongly depends on gaining public understanding and acceptance. Here we attempt to review what progress has been made and the remaining challenges surrounding the use of the sterile insect technique against malaria from technical and social perspectives.
    Acta tropica 11/2013; · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Infections caused by protozoan parasites are among the most widespread and intractable transmissible diseases affecting the developing world, with malaria and leishmaniasis being the most costly in terms of morbidity and mortality. Although new drugs are urgently required against both diseases in the face of ever-rising resistance to frontline therapies, very few candidates passing through development pipelines possess a known and novel mode of action. Set in the context of drugs currently in use and under development, we present the evidence for N-myristoyltransferase (NMT), an enzyme that N-terminally lipidates a wide range of specific target proteins through post-translational modification, as a potential drug target in malaria and the leishmaniases. We discuss the limitations of current knowledge regarding the downstream targets of this enzyme in protozoa, and our recent progress towards potent cell-active NMT inhibitors against the most clinically-relevant species of parasite. Finally, we outline the next steps required in terms of both tools to understand N-myristoylation in protozoan parasites, and the generation of potential development candidates based on the output of our recently-reported high-throughput screens.
    Parasitology 04/2013; · 2.36 Impact Factor
  • Pharmacogenetics and Genomics 09/2013; 23(9):498-508. · 3.61 Impact Factor

Full-text

View
129 Downloads
Available from
May 20, 2014