Synaptopathies: diseases of the synaptome

Genes to Cognition Programme, Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellors Building, 47 Little France Crescent, Edinburgh EH16 4SB, United Kingdom.
Current opinion in neurobiology (Impact Factor: 6.77). 03/2012; 22(3):522-9. DOI: 10.1016/j.conb.2012.02.002
Source: PubMed

ABSTRACT The human synapse proteome is a highly complex collection of proteins that is disrupted by hundreds of gene mutations causing over 100 brain diseases. These synaptic diseases, or synaptopathies, cause major psychiatric, neurological and childhood developmental disorders through mendelian and complex genetic mechanisms. The human postsynaptic proteome and its core signaling complexes built by the assembly of receptors and enzymes around Membrane Associated Guanylate Kinase (MAGUK) scaffold proteins are a paradigm for systematic analysis of synaptic diseases. In humans, the MAGUK Associated Signaling Complexes are mutated in Autism, Schizophrenia, Intellectual Disability and many other diseases, and mice carrying orthologous mutations show relevant cognitive, social, motoric and other phenotypes. Diseases with similar phenotypes and symptom spectrums arise from disruption of complexes and interacting proteins within the synapse proteome. Classifying synaptic disease phenotypes with genetic and proteome data provides a new brain disease classification system based on molecular etiology and pathogenesis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite significant progress in the genetics of autism spectrum disorder (ASD), how genetic mutations translate to the behavioral changes characteristic of ASD remains largely unknown. ASD affects 1-2% of children and adults, and is characterized by deficits in verbal and non-verbal communication, and social interactions, as well as the presence of repetitive behaviors and/or stereotyped interests. ASD is clinically and etiologically heterogeneous, with a strong genetic component. Here, we present functional data from syngap1 and shank3 zebrafish loss-of-function models of ASD. SYNGAP1, a synaptic Ras GTPase activating protein, and SHANK3, a synaptic scaffolding protein, were chosen because of mounting evidence that haploinsufficiency in these genes is highly penetrant for ASD and intellectual disability (ID). Orthologs of both SYNGAP1 and SHANK3 are duplicated in the zebrafish genome and we find that all four transcripts (syngap1a, syngap1b, shank3a and shank3b) are expressed at the earliest stages of nervous system development with pronounced expression in the larval brain. Consistent with early expression of these genes, knockdown of syngap1b or shank3a cause common embryonic phenotypes including delayed mid- and hindbrain development, disruptions in motor behaviors that manifest as unproductive swim attempts, and spontaneous, seizure-like behaviors. Our findings indicate that both syngap1b and shank3a play novel roles in morphogenesis resulting in common brain and behavioral phenotypes.
    The American Journal of Human Genetics 04/2015; DOI:10.1093/hmg/ddv138 · 10.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synapses act as information filters by different molecular mechanisms including retrograde messenger that affect neuronal spiking activity. One of the well-known effects of retrograde messenger in presynaptic neurons is a change of the probability of neurotransmitter release. Hebbian learning describe a strengthening of a synapse between a presynaptic input onto a postsynaptic neuron when both pre- and postsynaptic neurons are coactive. In this work, a theory of homeostatic regulation of neurotransmitter release by retrograde messenger and Hebbian plasticity in neuronal encoding is presented. Encoding efficiency was measured for different synaptic conditions. In order to gain high encoding efficiency, the spiking pattern of a neuron should be dependent on the intensity of the input and show low levels of noise. In this work, we represent spiking trains as zeros and ones (corresponding to non-spike or spike in a time bin, respectively) as words with length equal to three. Then the frequency of each word (here eight words) is measured using spiking trains. These frequencies are used to measure neuronal efficiency in different conditions and for different parameter values. Results show that neurons that have synapses acting as band-pass filters show the highest efficiency to encode their input when both Hebbian mechanism and homeostatic regulation of neurotransmitter release exist in synapses. Specifically, the integration of homeostatic regulation of feedback inhibition with Hebbian mechanism and homeostatic regulation of neurotransmitter release in the synapses leads to even higher efficiency when high stimulus intensity is presented to the neurons. However, neurons with synapses acting as high-pass filters show no remarkable increase in encoding efficiency for all simulated synaptic plasticity mechanisms.
    Frontiers in Cellular Neuroscience 04/2015; 9:164. DOI:10.3389/fncel.2015.00164 · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We created SynSysNet, available online at, to provide a platform that creates a comprehensive 4D network of synaptic interactions. Neuronal synapses are fundamental structures linking nerve cells in the brain and they are responsible for neuronal communication and information processing. These processes are dynamically regulated by a network of proteins. New developments in interaction proteomics and yeast two-hybrid methods allow unbiased detection of interactors. The consolidation of data from different resources and methods is important to understand the relation to human behaviour and disease and to identify new therapeutic approaches. To this end, we established SynSysNet from a set of ∼1000 synapse specific proteins, their structures and small-molecule interactions. For two-thirds of these, 3D structures are provided (from Protein Data Bank and homology modelling). Drug-target interactions for 750 approved drugs and 50 000 compounds, as well as 5000 experimentally validated protein-protein interactions, are included. The resulting interaction network and user-selected parts can be viewed interactively and exported in XGMML. Approximately 200 involved pathways can be explored regarding drug-target interactions. Homology-modelled structures are downloadable in Protein Data Bank format, and drugs are available as MOL-files. Protein-protein interactions and drug-target interactions can be viewed as networks; corresponding PubMed IDs or sources are given.
    Nucleic Acids Research 11/2012; 41(Database issue). DOI:10.1093/nar/gks1040 · 8.81 Impact Factor