Article

The LovK-LovR two-component system is a regulator of the general stress pathway in Caulobacter crescentus.

Committee on Microbiology, University of Chicago, Chicago, Illinois, USA.
Journal of bacteriology (Impact Factor: 2.69). 03/2012; 194(12):3038-49. DOI: 10.1128/JB.00182-12
Source: PubMed

ABSTRACT A conserved set of regulators control the general stress response in Caulobacter crescentus, including σ(T), its anti-σ factor NepR, the anti-anti-σ factor PhyR, and the transmembrane sensor kinase PhyK. We report that the soluble histidine kinase LovK and the single-domain response regulator LovR also function within the C. crescentus general stress pathway. Our genetic data support a model in which LovK-LovR functions upstream of σ(T) by controlling the phosphorylation state and thus anti-anti-σ activity of PhyR. Transcription of lovK and lovR is independently activated by stress through a mechanism that requires sigT and phyR. Conversely, lovK and lovR function together to repress transcription of the general stress regulon. Concordant with a functional role of the LovK-LovR two-component system as a negative regulator of the general stress pathway, lovK-lovR-null mutants exhibit increased cell survival after osmotic stress, while coordinate overexpression of lovK and lovR attenuates cell survival relative to that of the wild type. Notably, lovK can complement the transcriptional and cell survival defects of a phyK-null mutant when lovR is deleted. Moreover, in this same genetic background, σ(T)-dependent transcription is activated in response to osmotic stress. This result suggests that flavin-binding LOV (light, oxygen, or voltage) histidine kinases are competent to perceive cytoplasmic signals in addition to the environmental signal blue light. We conclude that the PhyK-PhyR and LovK-LovR two-component signaling systems coordinately regulate stress physiology in C. crescentus.

0 Followers
 · 
173 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To survive and adapt to environmental changes, bacteria commonly use two component signaling systems. Minimally, these pathways use histidine kinases (HKs) to detect environmental signals, harnessing these to control phosphorylation levels of receiver (REC) domains of downstream response regulators that convert this signal into physiological responses. Studies of several prototypical REC domains suggest that phosphorylation shifts these proteins between inactive and active structures that are globally similar and well-folded. However, it is unclear how globally these findings hold within REC domains in general, particularly when considered within full-length proteins. Here we present EL_LovR, a full-length REC-only protein that is phosphorylated in response to blue light in the marine α-proteobacterium Erythrobacter litoralis HTCC2594. Notably, EL_LovR is similar to comparable REC-only proteins used in bacterial general stress responses, where genetic evidence suggests that their potent phosphatase activity is important to shut off such systems. Size exclusion chromatography, light scattering and solution NMR experiments show that EL_LovR is monomeric and unfolded in solution under conditions routinely used for other REC structure determinations. Addition of Mg2+ and phosphorylation induce progressively greater degrees of tertiary structure stabilization, with the solution structure of the fully-activated EL_LovR adopting the canonical receiver domain fold. Parallel functional assays show that EL_LovR has a fast dephosphorylation rate, consistent with its proposed function as a phosphate sink that depletes the HK phosphoryl group, promoting the phosphatase activity of this enzyme. Our findings demonstrate that EL_LovR undergoes substantial ligand-dependent conformational changes that have not been reported for other RRs, expanding the scope of conformational changes and regulation used by REC domains, critical components of bacterial signaling systems.
    Biochemistry 01/2015; 54(6). DOI:10.1021/bi501143b · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The general stress response (GSR) is a widely conserved response that allows bacteria to cope with a multitude of stressful conditions. In the past years the PhyR-NepR-σ(EcfG) cascade was identified as the core pathway regulating the GSR in Alphaproteobacteria, in which it also plays an important role in bacteria-host interactions. The regulatory system is composed of the extracytoplasmic function sigma factor σ(EcfG), its anti-sigma factor NepR (for negative regulator of the PhyR response), and the anti-sigma factor antagonist PhyR (phyllosphere regulator). The three proteins function via a partner-switching mechanism that is triggered by PhyR phosphorylation, termed 'sigma factor mimicry'. This review will cover core features of the pathway, its physiological role, and summarize recent advances towards understanding of the partner-switching mechanism and of the two-component signaling pathways controlling the GSR. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Trends in Microbiology 01/2015; DOI:10.1016/j.tim.2014.12.006 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The general stress response (GSR) in Alphaproteobacteria was recently shown to be controlled by a partner-switching mechanism that is triggered by phosphorylation of the response regulator PhyR. Activation of PhyR ultimately results in release of the alternative extracytoplasmic function sigma factor σ(EcfG), which redirects transcription toward the GSR. Little is known about the signal transduction pathway(s) controlling PhyR phosphorylation. Here, we identified the single-domain response regulator (SDRR) SdrG and seven histidine kinases, PakA to PakG, belonging to the HWE/HisKA2 family as positive modulators of the GSR in Sphingomonas melonis Fr1. Phenotypic analyses, epistasis experiments, and in vitro phosphorylation assays indicate that Paks directly phosphorylate PhyR and SdrG, and that SdrG acts upstream of or in concert with PhyR, modulating its activity in a nonlinear pathway. Furthermore, we found that additional SDRRs negatively affect the GSR in a way that strictly requires PhyR and SdrG. Finally, analysis of GSR activation by thermal, osmotic, and oxidative stress indicates that Paks display different degrees of redundancy and that a specific kinase can sense multiple stresses, suggesting that the GSR senses a particular condition as a combination of, rather than individual, molecular cues. This study thus establishes the alphaproteobacterial GSR as a complex and interlinked network of two-component systems, in which multiple histidine kinases converge to PhyR, the phosphorylation of which is, in addition, subject to regulation by several SDRRs. Our finding that most HWE/HisKA2 kinases contribute to the GSR in S. melonis Fr1 opens the possibility that this notion might also be true for other Alphaproteobacteria.
    Proceedings of the National Academy of Sciences 11/2014; DOI:10.1073/pnas.1410095111 · 9.81 Impact Factor

Preview

Download
1 Download
Available from