Tyrosine-mutant AAV8 delivery of human MERTK provides long-term retinal preservation in RCS rats.

Department of Ophthalmology, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA.
Investigative ophthalmology & visual science (Impact Factor: 3.66). 03/2012; 53(4):1895-904. DOI: 10.1167/iovs.11-8831
Source: PubMed

ABSTRACT The absence of Mertk in RCS rats results in defective RPE phagocytosis, accumulation of outer segment (OS) debris in the subretinal space, and subsequent death of photoreceptors. Previous research utilizing Mertk gene replacement therapy in RCS rats provided proof of concept for treatment of this form of recessive retinitis pigmentosa (RP); however, the beneficial effects on retinal function were transient. In the present study, we evaluated whether delivery of a MERTK transgene using a tyrosine-mutant AAV8 capsid could lead to more robust and longer-term therapeutic outcomes than previously reported.
An AAV8 Y733F vector expressing a human MERTK cDNA driven by a RPE-selective promoter was administrated subretinally at postnatal day 2. Functional and morphological analyses were performed at 4 months and 8 months post-treatment. Retinal vasculature and Müller cell activation were analyzed by quantifying acellular capillaries and glial fibrillary acidic protein immunostaining, respectively.
Electroretinographic responses from treated eyes were more than one-third of wild-type levels and OS were well preserved in the injection area even at 8 months. Rescue of RPE phagocytosis, prevention of retinal vasculature degeneration, and inhibition of Müller cell activation were demonstrated in the treated eyes for at least 8 months.
This research describes a longer and much more robust functional and morphological rescue than previous studies. We also demonstrate for the first time that an AAV8 mutant capsid serotype vector has a substantial therapeutic potential for RPE-specific gene delivery. These results suggest that tyrosine-mutant AAV8 vectors hold promise for the treatment of individuals with MERTK-associated RP.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Early studies on Rpe65 knockout mice reported that remaining visual function was attributable to cone function. However, this finding has been challenged more and more as time has passed. Electroretinograms (ERGs) showed that rd12 mice, a spontaneous animal model of RPE65 Leber's congenital amaurosis, had sizeable photopic responses. Unfortunately, the recorded ERG waveform was difficult to interpret because of a remarkably delayed peak-time, which resembles a rod response more than a cone response. Here, we compare flicker ERGs in animals with normal rod and cone function (C57BL/6J mice), pure rod function (cpfl5 mice), and pure cone function (Rho-/- mice) under different adaptation levels and stimulus intensities. These responses were then compared with those obtained from rd12 mice. Our results showed that normal rods respond to low frequency flicker (5 and 15 Hz) and that normal cones respond to both low and high frequency flicker (5-35 Hz). As was seen in cpfl5 mice, rd12 mice had recordable responses to low frequency flicker (5 and 15Hz), but not to high frequency flicker (25 and 35 Hz). We hypothesize that abnormal rods may be the source of residual vision in rd12 mice, which is proved correct here with double mutant rd12mice. In this study, we show, for the first time, that frequency-response ERGs can effectively distinguish cone- and rod-driven responses in the rd12 mouse. It is another simple and valid method for evaluating the respective contributions of retinal rods and cones.
    PLoS ONE 02/2015; 10(2):e0117570. DOI:10.1371/journal.pone.0117570 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recombinant adeno-associated viruses are important vectors for retinal gene delivery. Currently utilized vectors have relatively slow onset and for efficient transduction it is necessary to deliver treatment subretinally, with the potential for damage to the retina. Amino-acid substitutions in the viral capsid improve efficiency in rodent eyes by evading host responses. As dogs are important large animal models for human retinitis pigmentosa, we evaluated the speed and efficiency of retinal transduction using capsid-mutant vectors injected both subretinally and intravitreally. We evaluated AAV serotypes 2 and 8 with amino-acid substitutions of surface exposed capsid tyrosine residues. The chicken beta-actin promoter was used to drive green fluorescent protein expression. Twelve normal adult beagles were injected, 4 dogs received intravitreal injections, 8 dogs received subretinal injections. Capsid-mutant viruses tested included AAV2(quad Y-F) (intravitreal and subretinal), and self-complementary scAAV8(Y733F) (subretinal only). Contralateral control eyes received injections of scAAV5 (subretinal) or scAAV2 (intravitreal). Subretinally delivered vectors had a faster expression onset than intravitreally delivered vectors. Subretinally delivered scAAV8(Y733F) had a faster onset of expression than scAAV5. All subretinally injected vector types transduced the outer retina with high efficiency, and the inner retina with moderate efficiency. Intravitreally delivered AAV2(quad Y-F) had a marginally higher efficiency of transduction of both outer retinal and inner retinal cells than scAAV2. Because of their rapid expression onset and efficient transduction, subretinally delivered capsid-mutant AAV8 vectors may increase the efficacy of gene therapy treatment for rapid photoreceptor degenerative diseases. With further refinement, capsid-mutant AAV2 vectors show promise for retinal gene delivery from an intravitreal approach.
    Gene therapy 11/2013; 21(1). DOI:10.1038/gt.2013.64 · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inherited retinopathies (IR) are common untreatable blinding conditions. Most of them are inherited as monogenic disorders, due to mutations in genes expressed in retinal photoreceptors (PR) and in retinal pigment epithelium (RPE). The retina’s compatibility with gene transfer has made transduction of different retinal cell layers in small and large animal models via viral and non-viral vectors possible. The ongoing identification of novel viruses as well as modifications of existing ones based either on rational design or directed evolution have generated vector variants with improved transduction properties. Dozens of promising proofs of concept have been obtained in IR animal models with both viral and non-viral vectors, and some of them have been relayed to clinical trials. To date, recombinant vectors based on the adeno-associated virus (AAV) represent the most promising tool for retinal gene therapy, given their ability to efficiently deliver therapeutic genes to both PR and RPE and their excellent safety and efficacy profiles in humans. However, AAVs’ limited cargo capacity has prevented application of the viral vector to treatments requiring transfer of genes with a coding sequence larger than 5kb. Vectors with larger capacity, i.e. nanoparticles, adenoviral and lentiviral vectors are being exploited for gene transfer to the retina in animal models and, more recently, in humans. This review focuses on the available platforms for retinal gene therapy to fight inherited blindness, highlights their main strengths and examines the efforts to overcome some of their limitations.
    Progress in Retinal and Eye Research 11/2014; DOI:10.1016/j.preteyeres.2014.08.001 · 9.90 Impact Factor