Article

A DFT and TD-DFT approach to the understanding of statistical kinetics in substitution reactions of M3Q4 (M = Mo, W; Q = S, Se) cuboidal clusters.

Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Apartado 40, Puerto Real, 11510 Cádiz, Spain.
Chemistry (Impact Factor: 5.93). 03/2012; 18(16):5036-46. DOI:10.1002/chem.201102629
Source: PubMed

ABSTRACT For many years it has been known that the nine water molecules in [M(3)Q(4)(H(2)O)(9)](4+) cuboidal clusters (M = Mo, W; Q = S, Se) can be replaced by entering ligands, such as chloride or thiocyanate, and kinetic studies carried out mainly on the substitution of the first water molecule at each metal centre reveal that the reaction at the three metal centres occurs with statistical kinetics; that is, a single exponential with a rate constant corresponding to the reaction at the third centre is observed instead of the expected three-exponential kinetic trace. Such simplification of the kinetic equations requires the simultaneous fulfilment of two conditions: first that the three consecutive rate constants are in statistical ratio, and second that the metal centres behave as independent chromophores. The validity of those simplifications has been checked for the case of the reaction of [Mo(3)S(4)(H(2)O)(9)](4+) with Cl(-) by using DFT and TD-DFT theoretical calculations. The results of those calculations are in agreement with the available experimental information, which indicates that the H(2)O ligands trans to the μ-S undergo substitution much faster than those trans to the μ(3)-S. Moreover, the energy barriers for the substitution of the first water molecule at the three metal centres are close to each other, the differences being compatible with the small changes in the numerical values of the rate constants required for observation of statistical kinetics. TD-DFT calculations lead to calculated electronic spectra, which are in reasonable agreement with those experimentally measured, but the calculations do not indicate that the three metal centres behave as independent chromophores, although the mathematical conditions required for simplification of the kinetic traces to a single exponential are reasonably well fulfilled at certain wavelengths. A re-examination of the kinetics of the reaction by using global fitting procedures yields results, which are compatible with statistical kinetics, although an alternative interpretation in which substitution only occurs at a single metal centre under reversible conditions is also possible.

0 0
 · 
0 Bookmarks
 · 
71 Views
  • [show abstract] [hide abstract]
    ABSTRACT: The conductor-like solvation model, as developed in the framework of the polarizable continuum model (PCM), has been reformulated and newly implemented in order to compute energies, geometric structures, harmonic frequencies, and electronic properties in solution for any chemical system that can be studied in vacuo. Particular attention is devoted to large systems requiring suitable iterative algorithms to compute the solvation charges: the fast multipole method (FMM) has been extensively used to ensure a linear scaling of the computational times with the size of the solute. A number of test applications are presented to evaluate the performances of the method.
    Journal of Computational Chemistry 05/2003; 24(6):669-81. · 3.84 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: There are now a wide variety of packages for electronic structure calculations, each of which differs in the algorithms implemented and the output format. Many computational chemistry algorithms are only available to users of a particular package despite being generally applicable to the results of calculations by any package. Here we present cclib, a platform for the development of package-independent computational chemistry algorithms. Files from several versions of multiple electronic structure packages are automatically detected, parsed, and the extracted information converted to a standard internal representation. A number of population analysis algorithms have been implemented as a proof of principle. In addition, cclib is currently used as an input filter for two GUI applications that analyze output files: PyMOlyze and GaussSum.
    Journal of Computational Chemistry 05/2008; 29(5):839-45. · 3.84 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The 1H,19F HOESY spectra of the title compounds in CD2Cl2 solution indicate that the cluster cations form ion pairs with the BF4- and PF6- anions with a well-defined interionic structure that appears to be basically determined essentially by the nature of the X- ligand. For the clusters with X = H and OH, the structure of the ion pairs is such that the counteranion (Y-) and the X- ligands are placed close to each other. However, when the size and electron density of X- increase (X = Br), Y- is forced to move to a different site, far away from X-. The relevance of ion-pairing on the chemistry of these compounds is clearly seen through a decrease in the rate of proton transfer from HCl to the hydride cluster [W3S4H3(dmpe)3]+ in the presence of an excess of BF4-. The kinetic data for this reaction can be rationalized by considering that the ([W3S4H3(dmpe)3]+, BF4-) ion pairs are unproductive in the proton-transfer process. Theoretical calculations indicate that the real behavior can be more complex. Although the cluster can still form adducts with HCl in the presence of BF4-, the structures of the most-stable BF4--containing HCl adducts show H...H distances too large to allow the subsequent release of H2. In addition, the effective concentration of HCl is also reduced because of the formation of adducts as ClH...BF4-. As a consequence of both effects, the proton transfer takes place more slowly than for the case of the dihydrogen-bonded HCl adduct resulting from the unpaired cluster.
    Inorganic Chemistry 08/2006; 45(15):5774-84. · 4.59 Impact Factor

Andrés G Algarra