Article

Poultry and livestock exposure and cancer risk among farmers in the agricultural health study.

Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Cancer Causes and Control (Impact Factor: 3.2). 03/2012; 23(5):663-70. DOI: 10.1007/s10552-012-9921-1
Source: PubMed

ABSTRACT The purpose of this study is to evaluate cancer risk associated with raising animals as commodities, which is associated with a variety of exposures, such as infectious agents and endotoxins.
Information was available for 49,884 male farmers in the Agricultural Health Study, who reported livestock and poultry production at enrollment (1993-1997). Cancer incidence data were obtained through annual linkage to state registries. Using Poisson regression analyses, we evaluated whether the number and type of animals raised on the farm impacted cancer risk.
Overall, 31,848 (63.8%) male farmers reported raising any animals. Lung cancer risk decreased with increasing number of livestock on the farm (p trend = 0.04) and with raising poultry (Relative Risk (RR) = 0.6; 95% confidence interval (CI): 0.4-0.97). Raising poultry was associated with an increased risk of colon cancer (RR = 1.4; 95% CI: 0.99-2.0) with further increased with larger flocks (p trend = 0.02). Risk of non-Hodgkin lymphoma was also elevated in those who raised poultry (RR = 1.6; 95% CI: 1.0-2.4), but there was no evidence of increased risk with larger flocks (p trend = 0.5). Raising sheep was associated with a significantly increased risk of multiple myeloma (RR = 4.9; 95% CI: 2.4-12.0). Performing veterinary services increased the risk of Hodgkin lymphoma (RR = 12.2; 95% CI: 1.6-96.3).
We observed an inverse association between raising poultry and livestock and lung cancer risk and some evidence of increased risk of specific lymphohematopoietic malignancies with specific types of animals and performing veterinary services. Further research into associations between raising animals and cancer risk should focus on identification of etiologic agents.

0 Bookmarks
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Livestock breeders including poultry workers are exposed to various agricultural chemicals including pesticides and/or organic solvents. Multiple myeloma is a rare disease in Korea, and few reports have investigated the influence of occupational exposures on multiple myeloma occurrence. A 61-year-old male poultry farm worker presented with bone pain and generalized weakness. A bone marrow biopsy was performed, and he was diagnosed with multiple myeloma. The patient had worked in a poultry farm for 16 years and was exposed to various pesticides and organic solvents such as formaldehyde without any proper personal protective equipment. Results of the work reenactment revealed that the concentration of formaldehyde (17.53 ppm) greatly exceeded the time-weighted average (0.5 ppm) and short-term exposure limit (1.0 ppm) suggested in the Korean Industrial Safety and Health Act. This case report suggests that poultry workers may be exposed to high levels of various hazardous chemicals including pesticides and/or organic solvents. Numerous previous studies have suggested an association between multiple myeloma and exposure to agricultural chemicals; thus, multiple myeloma in this patient might have resulted from the prolonged, high exposure to these chemicals.
    Annals of occupational and environmental medicine. 12/2014; 26(1):35.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Farming and pesticide use have previously been linked to non-Hodgkin lymphoma (NHL), chronic lymphocytic leukemia (CLL) and multiple myeloma (MM). We evaluated agricultural use of specific insecticides, fungicides, and fumigants and risk of NHL and NHL-subtypes (including CLL and MM) in a U.S.-based prospective cohort of farmers and commercial pesticide applicators. A total of 523 cases occurred among 54,306 pesticide applicators from enrollment (1993–97) through December 31, 2011 in Iowa, and December 31, 2010 in North Carolina. Information on pesticide use, other agricultural exposures and other factors was obtained from questionnaires at enrollment and at follow-up approximately five years later (1999–2005). Information from questionnaires, monitoring, and the literature were used to create lifetime-days and intensity-weighted lifetime days of pesticide use, taking into account exposure-modifying factors. Poisson and polytomous models were used to calculate relative risks (RR) and 95% confidence intervals (CI) to evaluate associations between 26 pesticides and NHL and five NHL-subtypes, while adjusting for potential confounding factors. For total NHL, statistically significant positive exposure-response trends were seen with lindane and DDT. Terbufos was associated with total NHL in ever/never comparisons only. In subtype analyses, terbufos and DDT were associated with small cell lymphoma/chronic lymphocytic leukemia/marginal cell lymphoma, lindane and diazinon with follicular lymphoma, and permethrin with MM. However, tests of homogeneity did not show significant differences in exposure-response among NHL-subtypes for any pesticide. Because 26 pesticides were evaluated for their association with NHL and its subtypes, some chance finding could have occurred. Our results showed pesticides from different chemical and functional classes were associated with an excess risk of NHL and NHL subtypes, but not all members of any single class of pesticides were associated with an elevated risk of NHL or NHL subtypes. These findings are among the first to suggest links between DDT, lindane, permethrin, diazinon and terbufos with NHL subtypes.
    PLoS ONE 10/2014; 9(10). · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prospective cohorts have played a major role in understanding the contribution of diet, physical activity, medical conditions, and genes to the development of many diseases, but have not been widely used for occupational exposures. Studies in agriculture are an exception. We draw upon our experience using this design to study agricultural workers to identify conditions that might foster use of prospective cohorts to study other occupational settings. Prospective cohort studies are perceived by many as the strongest epidemiologic design. It allows updating of information on exposure and other factors, collection of biologic samples before disease diagnosis for biomarker studies, assessment of effect modification by genes, lifestyle, and other occupational exposures, and evaluation of a wide range of health outcomes. Increased use of prospective cohorts would be beneficial in identifying hazardous exposures in the workplace. Occupational epidemiologists should seek opportunities to initiate prospective cohorts to investigate high priority, occupational exposures. Am. J. Ind. Med. 58:113–122, 2015.
    American Journal of Industrial Medicine 01/2015; 58:113-122. · 1.59 Impact Factor

Full-text (2 Sources)

Download
48 Downloads
Available from
Jun 1, 2014