Solid-phase-assisted synthesis of targeting peptide-PEG-oligo(ethane amino)amides for receptor-mediated gene delivery.

Institute for Research in Biomedicine (IRB Barcelona), Barcelona Science Park (PCB), Baldiri Reixac 10, 08028 Barcelona, Spain.
Organic & Biomolecular Chemistry (Impact Factor: 3.57). 03/2012; 10(16):3258-68. DOI: 10.1039/c2ob06907e
Source: PubMed

ABSTRACT In the forthcoming era of cancer gene therapy, efforts will be devoted to the development of new efficient and non-toxic gene delivery vectors. In this regard, the use of Fmoc/Boc-protected oligo(ethane amino)acids as building blocks for solid-phase-supported assembly represents a novel promising approach towards fully controlled syntheses of effective gene vectors. Here we report on the synthesis of defined polymers containing the following: (i) a plasmid DNA (pDNA) binding domain of eight succinoyl-tetraethylenpentamine (Stp) units and two terminal cysteine residues; (ii) a central polyethylene glycol (PEG) chain (with twenty-four oxyethylene units) for shielding; and (iii) specific peptides for targeting towards cancer cells. Peptides B6 and c(RGDfK), which bind transferrin receptor and α(v)β(3) integrin, respectively, were chosen because of the high expression of these receptors in many tumoral cells. This study shows the feasibility of designing these kinds of fully controlled vectors and their success for targeted pDNA-based gene transfer.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of well-defined polypeptide-polypeptoid block copolymers based on the body's own amino acids sarcosine and lysine are prepared by ring opening polymerization of N-carboxyanhydrides. Block lengths were varied between 200-300 for the shielding polysarcosine block and 20-70 for the complexing polylysine block. Dispersity indexes ranged from 1.05 to 1.18. Polylysine is polymerized with benzyloxycarbonyl as well as trifluoroacetyl protecting groups at the ϵ-amine group and optimized deprotection protocols for both groups are reported. The obtained block ionomers are used to complex pDNA resulting in the formation of polyplexes (PeptoPlexes). The PeptoPlexes can be successfully applied in the transfection of HEK 293T cells and are able to transfect up to 50% of cells in vitro (FACS assay), while causing no detectable toxicity in an Annexin V assay. These findings are a first indication that PeptoPlexes may be a suitable alternative to PEG based non-viral transfection systems.
    Macromolecular Bioscience 06/2014; · 3.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Among the many scientific advances to come from the study of nanoscience, the development of ligand-targeted nanoparticles to eliminate solid tumors is predicted to have a major impact on human health. There are many reports describing novel designs and testing of targeted nanoparticles to treat cancer. While the principles of the technology are well demonstrated in controlled lab experiments, there are still many hurdles to overcome for the science to mature into truly efficacious targeted nanoparticles that join the arsenal of agents currently used to treat cancer in humans. One of these hurdles is overcoming unwanted biodistribution to the liver while maximizing delivery to the tumor. This almost certainly requires advances in both nanoparticle stealth technology and targeting. Currently, it continues to be a challenge to control the loading of ligands onto polyethylene glycol (PEG) to achieve maximal targeting. Nanoparticle cellular uptake and subcellular targeting of genes and siRNA also remain a challenge. This review examines the types of ligands that have been most often used to target nanoparticles to solid tumors. As the science matures over the coming decade, careful control over ligand presentation on nanoparticles of precise size, shape, and charge will likely play a major role in achieving success.
    AAPS PharmSciTech 06/2014; · 1.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Native chemical ligation (NCL) was established for the conversion of sequence-defined oligomers of different topologies into targeted and PEG shielded pDNA and siRNA carriers. From an existing library of non-targeted oligoethanamino amides, six oligomers containing N-terminal cysteines were selected as cationic cores, to which monodisperse polyethylene glycol (PEG) containing terminal folic acid as targeting ligand (or terminal alanine as targeting negative control ligand) were attached by NCL. Ligated conjugates plus controls (in sum 18 oligomers) were evaluated for pDNA or siRNA gene delivery. Biophysical characteristics including nucleic acid binding in the absence or presence of serum, as well as biological activities in cellular uptake and gene transfer (or gene silencing, respectively) were determined. In most cases, the folic acid-PEG-ligated oligomers displayed a strongly improved cellular binding, uptake and gene transfer into receptor-positive KB cells as compared to the alanine-PEG controls. Changing the topological structures by increasing the number of cationic arms, adding tyrosine trimers as polyplex stabilizing domains, or histidines facilitating endosomal escape resulted in beneficial gene transfer characteristics. The screen revealed different requirements for pDNA and siRNA delivery. A folate-PEG ligated histidinylated four-arm oligomer was most effective for pDNA delivery but inactive for siRNA, whereas a folate-PEG-ligated three-arm oligomer with tyrosine trimer modifications was most effective in siRNA mediated gene silencing. The results demonstrate the site-selective NCL reaction as powerful method to modify existing oligomers. Thus multifunctional targeted carriers can be obtained with ease and used to identify lead structures for subsequent in vivo delivery.
    Journal of Controlled Release 02/2014; · 7.63 Impact Factor