Article

A new age for rehabilitation

Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA.
European journal of physical and rehabilitation medicine (Impact Factor: 1.95). 03/2012; 48(1):99-109.
Source: PubMed

ABSTRACT In this review we will describe newly developed techniques that are being used to recover levels of motor function after a severe spinal cord injury that have not been observed previously. These new approaches include pharmacological neuromodulation and/or epidural stimulation of the spinal cord circuitries in combination with motor training. By combining the increased levels of excitability of the interneuronal spinal circuitries using these interventions and the ability of the spinal circuitries to interpret and respond appropriately to ongoing complex ensembles of sensory input, the peripheral sensory system can become an effective source for the control of motor function. Similar types of neuromodulation have been shown to enable the brain to regain functional connectivity with the spinal cord circuitries below a clinically complete spinal cord lesion. In fact, some level of voluntary control of movement has been observed in subjects with complete paralysis in the presence of epidural stimulation. The biological mechanisms thought to underlie the recovery of motor function after a severe spinal cord injury are based on decades of research on a wide range of animal models. Fortunately the extensive conservation of neural mechanisms of motor control has provided a window for gaining considerable insight into the mechanisms of recovery of motor function in humans.

2 Followers
 · 
92 Views
  • Source
    • "Patients can be trained to step with body weight support unassisted, but they use activity patterns in individual muscles that were often different from healthy individuals. A number of clinical trials have suggested the possible beneficial effects of locomotor training in SCI patients (Edgerton and Roy, 2012). In patients with severe SCI disorders, initial training is performed while being supported by a harness or with their body partially unloaded. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Human locomotor movements exhibit considerable variability and are highly complex in terms of both neural activation and biomechanical output. The building blocks with which the central nervous system constructs these motor patterns can be preserved in patients with various sensory-motor disorders. In particular, several studies highlighted a modular burst-like organization of the muscle activity. Here we review and discuss this issue with a particular emphasis on the various examples of adaptation of locomotor patterns in patients (with large fiber neuropathy, amputees, stroke and spinal cord injury). The results highlight plasticity and different solutions to reorganize muscle patterns in both peripheral and central nervous system lesions. The findings are discussed in a general context of compensatory gait mechanisms, spatiotemporal architecture and modularity of the locomotor program.
    Frontiers in Computational Neuroscience 09/2013; 7:123. DOI:10.3389/fncom.2013.00123 · 2.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spinal cord injury results from an insult inflicted on the spinal cord that usually encompasses its 4 major functions (motor, sensory, autonomic, and reflex). The type of deficits resulting from spinal cord injury arise from primary insult, but their long-term severity is due to a multitude of pathophysiological processes during the secondary phase of injury. The failure of the mammalian spinal cord to regenerate and repair is often attributed to the very feature that makes the central nervous system special-it becomes so highly specialized to perform higher functions that it cannot effectively reactivate developmental programs to re-build novel circuitry to restore function after injury. Added to this is an extensive gliotic and immune response that is essential for clearance of cellular debris, but also lays down many obstacles that are detrimental to regeneration. Here, we discuss how the mature chromatin state of different central nervous system cells (neural, glial, and immune) may contribute to secondary pathophysiology, and how restoring silenced developmental gene expression by altering histone acetylation could stall secondary damage and contribute to novel approaches to stimulate endogenous repair.
    Journal of the American Society for Experimental NeuroTherapeutics 10/2013; 10(4). DOI:10.1007/s13311-013-0228-z · 3.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Electrical stimulation of the spinal cord has potential applications following spinal cord injury for reanimating paralysed limbs and promoting neuroplastic changes that may facilitate motor rehabilitation. Here we systematically compare the efficacy, selectivity and frequency-dependence of different stimulation methods in the cervical enlargement of anaesthetized monkeys. Stimulating electrodes were positioned at multiple epidural and subdural sites on both dorsal and ventral surfaces, as well as at different depths within the spinal cord. Motor responses were recorded from arm, forearm and hand muscles. Stimulation efficacy increased from dorsal to ventral stimulation sites, with the exception of ventral epidural electrodes which had the highest recruitment thresholds. Compared to epidural and intraspinal methods, responses to subdural stimulation were more selective but also more similar between adjacent sites. Trains of stimuli delivered to ventral sites elicited consistent responses at all frequencies whereas from dorsal sites we observed a mixture of short-latency facilitation and long-latency suppression. Finally, paired stimuli delivered to dorsal surface and intraspinal sites exhibited symmetric facilitatory interactions at interstimulus intervals between 2–5 ms whereas on the ventral side interactions tended to be suppressive for near-simultaneous stimuli. We interpret these results in the context of differential activation of afferent and efferent roots and intraspinal circuit elements. In particular, we propose that distinct direct and indirect actions of spinal cord stimulation on motoneurons may be advantageous for different applications, and this should be taken into consideration when designing neuroprostheses for upper-limb function.
    Journal of Neural Engineering 02/2014; 11(1):016005. DOI:10.1088/1741-2560/11/1/016005 · 3.42 Impact Factor
Show more