Article

Genetic polymorphisms in the opioid receptor mu1 gene are associated with changes in libido and insomnia in methadone maintenance patients.

Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan.
European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology (Impact Factor: 3.68). 03/2012; 22(10):695-703. DOI: 10.1016/j.euroneuro.2012.02.002
Source: PubMed

ABSTRACT Methadone, a synthetic racemic opioid that primarily works as a μ-opioid receptor (OPRM1) agonist, is commonly used for the treatment of heroin addiction. Genetic association studies have reported that the OPRM1 gene is involved in the physiology of heroin and alcohol addiction. Our current study is designed to test the hypothesis that genetic polymorphisms in the OPRM1 gene region are associated with methadone dosage, plasma concentrations, treatment responses, adverse reactions and withdrawal symptoms in a methadone maintenance treatment (MMT) cohort from Taiwan. Fifteen OPRM1 single nucleotide polymorphisms (SNPs) were selected and genotyped using DNA samples from 366 MMT patients. The plasma concentrations of methadone and its metabolite were measured by high performance liquid chromatography. The results obtained using dominant model analysis indicate that the OPRM1 SNPs rs1074287, rs6912029, rs12209447, rs510769, rs3798676, rs7748401, rs495491, rs10457090, rs589046, rs3778152, rs563649, and rs2075572 are significantly associated with change-in-libido side effects (adjusted p<0.042). Using recessive model analysis, these SNPs were also found to be significantly associated with insomnia side effects in this cohort (p<0.009). The significance of the insomnia findings was mainly contributed by a subgroup of patients who had a positive urine morphine test (p<0.022), and by individuals who did not use benzodiazepine hypnotics (p<0.034). Our current data thus suggest that genetic polymorphisms in OPRM1 may influence the change-in-libido and insomnia side effects sometimes found in MMT patients.

0 Bookmarks
 · 
84 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Opioids are the cornerstone of analgesic therapy and are used as a substitution therapy for opiate addiction. Interindividual variability in response to opioids is a significant challenge in the management of pain and substitution. Therefore, treatment with opioids requires a careful individualization of dosage to achieve an appropriate balance of efficacy and adverse effects and, consequently, avoid toxicity, particularly respiratory depression, sedation and for some, cardiac ventricular fibrillations. Many studies have investigated the association between genetic factors and the variability of response to opioids. Variants in genes encoding proteins implied in opioid pharmacokinetics (absorption, distribution, metabolism, excretion and toxicity), together with those implied in opioids direct and indirect pharmacodynamics (genes of opioid receptors and monoaminergic systems), are the most studied. Many association studies have not been replicated. The purpose of this article is to summarize pharmacogenetic data associated with some opioids frequently encountered in managed care settings.
    Pharmacogenomics 04/2013; 14(5):575-85. · 3.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pharmacogenetic research has the potential to explain the variation in treatment efficacy within patient populations. Understanding the interaction between genetic variation and medications may provide a method for matching patients to the most effective therapeutic options and improving overall patient outcomes. The OPRM1 gene has been a target of interest in a large number of pharmacogenetic studies due to its genetic and structural variation, as well as the role of opioid receptors in a variety of disorders. The mu-opioid receptor (MOR), encoded by OPRM1, naturally regulates the analgesic response to pain and also controls the rewarding effects of many drugs of abuse, including opioids, nicotine, and alcohol. Genetic variants in OPRM1, particularly the nonsynonymous polymorphism A118G, have been repeatedly associated with the efficacy of treatments for pain and various types of dependence. This review focuses on the current understanding of the pharmacogenetic impact of OPMR1, primarily in regards to the treatment of pain and addiction.
    Pharmacology Biochemistry and Behavior 11/2013; · 2.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Methadone is a synthetic opioid that binds to the κ-opioid receptor with a low affinity. This study tested the hypotheses that the genetic polymorphisms in the κ-opioid receptor 1 (OPRK1) gene region are associated with methadone treatment responses in a Taiwan methadone maintenance treatment (MMT) cohort. Seventeen single nucleotide polymorphisms (SNPs) in OPRK1 were selected and genotyped on DNA of 366 MMT patients. Six SNPs from rs7843965 to rs1051660 (intron 2 to exon 2) were significantly associated with body weight (P < 0.007). A haplotype of 4 SNPs rs7832417-rs16918853-rs702764-rs7817710 (exon 4 to intron 3) was associated with bone or joint aches (P ≤ 0.004) and with the amount of alcohol use (standard drinks per day; global P < 0.0001). The haplotype rs10958350-rs7016778-rs12675595 was associated with gooseflesh skin (global P < 0.0001), yawning (global P = 0.0001), and restlessness (global P < 0.0001) withdrawal symptoms. The findings suggest that genetic polymorphisms in OPRK1 were associated with the body weight, alcohol use, and opioid withdrawal symptoms in MMT patients.
    Journal of clinical psychopharmacology 02/2014; · 5.09 Impact Factor