Article

Caveolin-1 silencing arrests the proliferation of metastatic lung cancer cells through the inhibition of STAT3 signaling.

Department of Experimental Pathology, University of Bologna, Bologna, Italy.
Cellular Signalling (Impact Factor: 4.47). 03/2012; 24(7):1390-7. DOI: 10.1016/j.cellsig.2012.02.015
Source: PubMed

ABSTRACT Cav-1 is an essential structural constituent of caveolae implicated in mitogenic signaling, oncogenesis, angiogenesis, neurodegenerative diseases and senescence. Its role as a tumor suppressor gene or as a tumor promoter seems to strictly depend on cell type and tumor stage/grade. The high expression of Cav-1 in some tumors in vivo, amongst which lung adenocarcinoma, is associated with increased tumor aggressiveness, metastatic potential and suppression of apoptosis. In the present study we investigated the role of Cav-1 in metastatic lung cancer proliferation. Cell lines were from metastatic lesions of lung adenocarcinoma (RAL) and of small cell lung carcinoma (SCLC-R1), in which we found Cav-1 expressed at high levels. Results show that siRNA-mediated down-regulation of Cav-1 caused stable arrest of proliferation in both cell lines. A marked reduction of cyclin D1 and of CDK4 expression was evident in the cells transfected with Cav-1 siRNA and consequently of phospho-Rb on ser(795) and ser(780). Furthermore, a significant decrease of the expression of phosphorylated AKT and of its down-stream effectors phosphorylated ERK and STAT3 was evident. Together, these findings indicate that Cav-1 silencing induces an arrest of human metastatic lung proliferation in vitro by a new inhibitory pathway in lung cancer and provide new insights into the molecular mechanisms underlying the pro-survival and tumor-promoting functions of Cav-1.

0 Bookmarks
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Caveolae are specialized plasma membrane subdomains with distinct lipid and protein compositions, which play an essential role in cell physiology through regulation of trafficking and signalling functions. The structure and functions of caveolae have been shown to require the proteins caveolins. Recently, members of the cavin protein family were found to be required, in concert with caveolins, for the formation and function of caveolae. Caveolins have a paradoxical role in the development of cancer formation. They have been involved in both tumor suppression and oncogenesis, depending on tumor type and progress stage. High expression of caveolins and cavins leads to inhibition of cancer-related pathways, such as growth factor signaling pathways. However, certain cancer cells that express caveolins and cavins have been shown to be more aggressive and metastatic because of their increased potential for anchorage-independent growth. Here, we will survey the functional roles of caveolins and of different cavin family members in cancer regulation.
    Biochimie 09/2014; · 3.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer stem cells (CSCs) may represent targets for carcinogenic initiation by chemical and environmental agents. Recent studies have raised a concern over the potential carcinogenicity of carbon nanotubes (CNTs), one of the most commonly used engineered nanomaterials with asbestos-like properties. Here, we show that chronic (6-month) exposure of human lung epithelial cells to single-walled (SW) CNTs at the workplace-relevant concentration induced an emergence of lung CSCs, as indicated by the induction of CSC tumor spheres and side population (SP). These CSCs, which were found to overexpress tumor promoter caveolin-1 (Cav-1), displayed aggressive cancer phenotypes of apoptosis resistance and enhanced cell invasion and migration compared with their non-CSC counterpart. Using gene manipulation strategies, we reveal for the first time that Cav-1 plays an essential role in CSC regulation and aggressiveness of SWCNT-transformed cells partly through p53 dysregulation, consistent with their suggested role by microarray and gene ontology analysis. Cav-1 not only promoted tumorigenesis in a xenograft mouse model but also metastasis of the transformed cells to neighboring tissues. Since CSCs are crucial to the initiation and early development of carcinogenesis, our findings on CSC induction by SWCNTs and Cav-1 could aid in the early detection and risk assessment of the disease.
    Oncotarget 05/2014; · 6.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer development and progression is not only associated with the tumor cell proliferation but also depends on the interaction between tumor cells and the stromal microenvironment. A new understanding of the role of the tumor microenvironment suggests that the loss of stromal caveolin-1 (Cav-1) as a key regulator may become a potential therapy target. This study aims to elucidate whether stromal Cav-1 expression in pancreatic cancer can be a strong prognosis biomarker.
    PLoS ONE 01/2014; 9(6):e97239. · 3.53 Impact Factor