Genes under positive selection in a model plant pathogenic fungus, Botrytis

Ecologie, Systématique et Evolution, Université Paris-Sud UMR8079, F-91405 Orsay Cedex, France.
Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases (Impact Factor: 3.02). 03/2012; 12(5):987-96. DOI: 10.1016/j.meegid.2012.02.012
Source: PubMed

ABSTRACT The rapid evolution of particular genes is essential for the adaptation of pathogens to new hosts and new environments. Powerful methods have been developed for detecting targets of selection in the genome. Here we used divergence data to compare genes among four closely related fungal pathogens adapted to different hosts to elucidate the functions putatively involved in adaptive processes. For this goal, ESTs were sequenced in the specialist fungal pathogens Botrytis tulipae and Botrytis ficariarum, and compared with genome sequences of Botrytis cinerea and Sclerotinia sclerotiorum, responsible for diseases on over 200 plant species. A maximum likelihood-based analysis of 642 predicted orthologs detected 21 genes showing footprints of positive selection. These results were validated by resequencing nine of these genes in additional Botrytis species, showing they have also been rapidly evolving in other related species. Twenty of the 21 genes had not previously been identified as pathogenicity factors in B. cinerea, but some had functions related to plant-fungus interactions. The putative functions were involved in respiratory and energy metabolism, protein and RNA metabolism, signal transduction or virulence, similarly to what was detected in previous studies using the same approach in other pathogens. Mutants of B. cinerea were generated for four of these genes as a first attempt to elucidate their functions.

Download full-text


Available from: Gabriela Aguileta, Sep 27, 2015
81 Reads
  • Source
    • "This approach has been used to reveal ECs in several filamentous plant pathogen lineages [29–34]. Positive selection has been detected in B. cinerea genome [35] suggesting that it may be used to mine S. sclerotiorum genome for ECs. Second, gene duplication is another hallmark of several known fungal effector genes, such as the ToxB host specific toxin of Pyrenophora tritici-repentis [36, 37]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The white mold fungus Sclerotinia sclerotiorum is a devastating necrotrophic plant pathogen with a remarkably broad host range. The interaction of necrotrophs with their hosts is more complex than initially thought, and still poorly understood. Results We combined bioinformatics approaches to determine the repertoire of S. sclerotiorum effector candidates and conducted detailed sequence and expression analyses on selected candidates. We identified 486 S. sclerotiorum secreted protein genes expressed in planta, many of which have no predicted enzymatic activity and may be involved in the interaction between the fungus and its hosts. We focused on those showing (i) protein domains and motifs found in known fungal effectors, (ii) signatures of positive selection, (iii) recent gene duplication, or (iv) being S. sclerotiorum-specific. We identified 78 effector candidates based on these properties. We analyzed the expression pattern of 16 representative effector candidate genes on four host plants and revealed diverse expression patterns. Conclusions These results reveal diverse predicted functions and expression patterns in the repertoire of S. sclerotiorum effector candidates. They will facilitate the functional analysis of fungal pathogenicity determinants and should prove useful in the search for plant quantitative disease resistance components active against the white mold. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-336) contains supplementary material, which is available to authorized users.
    BMC Genomics 05/2014; 15(1):336. DOI:10.1186/1471-2164-15-336 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in molecular technologies have opened up unprecedented opportunities for molecular ecologists to better understand the molecular basis of traits of ecological and evolutionary importance in almost any organism. Nevertheless, reliable and systematic inference of functionally relevant information from these masses of data remains challenging. The aim of this review is to highlight how the Gene Ontology (GO) database can be of use in resolving this challenge. The GO provides a largely species-neutral source of information on the molecular function, biological role and cellular location of tens of thousands of gene products. As it is designed to be species-neutral, the GO is well suited for cross-species use, meaning that, functional annotation derived from model organisms can be transferred to inferred orthologues in newly sequenced species. In other words, the GO can provide gene annotation information for species with nonannotated genomes. In this review, we describe the GO database, how functional information is linked with genes/gene products in model organisms, and how molecular ecologists can utilize this information to annotate their own data. Then, we outline various applications of GO for enhancing the understanding of molecular basis of traits in ecologically relevant species. We also highlight potential pitfalls, provide step-by-step recommendations for conducting a sound study in nonmodel organisms, suggest avenues for future research and outline a strategy for maximizing the benefits of a more ecological and evolutionary genomics-oriented ontology by ensuring its compatibility with the GO.
    Molecular Ecology 06/2013; 22(12). DOI:10.1111/mec.12309 · 6.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cerato-platanin family is a group of small cysteine-rich fungal proteins new to science. They usually are abundantly secreted extracellularly and are involved in fungus-host interactions. With the advance of available fungal genome sequences, we performed a genomewide study of the distribution of this family in fungi and analyzed the common characteristics of the protein sequences. A total of 55 fungal genomes, including 27 from Ascomycota and 28 from Basidiomycota, were used. A total of 130 cerato-platanin homolog protein sequences were obtained and analyzed. Our results showed that cerato-platanin homologs existed in both Ascomycota and Basidiomycota but were lost in early branches of jelly fungi as well as in some groups with yeast or yeast-like forms in their life cycle. Homolog numbers varied considerably between Ascomycota and Basidiomycota. Phylogenetic analysis suggested that the ancestor of the Dikarya possessed multiple copies of cerato-platanins, which sorted differently in Ascomycota and Basidiomycota, and that this gene family might have expanded in the Basidiomycota. Almost all homologs contained signal peptide sequences, and the length of mature proteins were mainly 105-134 amino acids. Four cysteines involved in forming two disulfide bridges and signature sequences (CSD or CSN) were highly conserved in most homologs. These results indicated a higher diversity of the cerato-platanin family in Basidiomycota than Ascomycota.
    Mycologia 08/2013; 105(6). DOI:10.3852/13-115 · 2.47 Impact Factor
Show more