Current applications of optical coherence tomography for coronary intervention.

Department of Interventional Cardiology, Istituto Clinico Humanitas IRCCS, Rozzano, Milan, Italy.
International journal of cardiology (Impact Factor: 6.18). 03/2012; DOI: 10.1016/j.ijcard.2012.02.013
Source: PubMed

ABSTRACT Optical coherence tomography (OCT) is the 'new kid on the block' in coronary imaging. This technology offers clinicians a high resolution (approximately 15μm), that is ten times higher than the currently accepted gold standard of intravascular ultrasound and has emerged as the ideal imaging tool for the assessment of superficial components of coronary plaques and stent struts. Novel OCT systems can perform quick and safe scanning of coronary arteries with a non-occlusive technique. A brief summary containing the key physical principles of OCT technology with particular attention to the novel Fourier domain system is presented. This review will focus on clinical and research applications of OCT in interventional cardiology. The two main fields of OCT in vivo: coronary atherosclerosis assessment and the study of vessel wall response to stent implantation in terms of strut coverage and apposition will be delineated. Limitations and future perspectives of the technique are presented.

  • Source
    International Journal of Cardiology 08/2014; · 6.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Disturbed cardiac function at an early stage of development has been shown to correlate with cellular/molecular, structural as well as functional cardiac anomalies at later stages culminating in the congenital heart defects (CHDs) that present at birth. While our knowledge of cellular and molecular steps in cardiac development is growing rapidly, our understanding of the role of cardiovascular function in the embryo is still in an early phase. One reason for the scanty information in this area is that the tools to study early cardiac function are limited. Recently developed and adapted biophotonic tools may overcome some of the challenges of studying the tiny fragile beating heart. In this chapter, we describe and discuss our experience in developing and implementing biophotonic tools to study the role of function in heart development with emphasis on optical coherence tomography (OCT). OCT can be used for detailed structural and functional studies of the tubular and looping embryo heart under physiological conditions. The same heart can be rapidly and quantitatively phenotyped at early and again at later stages using OCT. When combined with other tools such as optical mapping (OM) and optical pacing (OP), OCT has the potential to reveal in spatial and temporal detail the biophysical changes that can impact mechanotransduction pathways. This information may provide better explanations for the etiology of the CHDs when interwoven with our understanding of morphogenesis and the molecular pathways that have been described to be involved. Future directions for advances in the creation and use of biophotonic tools are discussed.
    Frontiers in physiology. 01/2014; 5:351.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The deployment of a coronary stent near complex lesions can sometimes lead to incomplete stent apposition (ISA), an undesirable side effect of coronary stent implantation. Three-dimensional computational fluid dynamics (CFD) calculations are performed on simplified stent models (with either square or circular cross-section struts) inside an idealised coronary artery to analyse the effect of different levels of ISA to the change in haemodynamics inside the artery. The clinical significance of ISA is reported using haemodynamic metrics like wall shear stress (WSS) and wall shear stress gradient (WSSG). A coronary stent with square cross-sectional strut shows different levels of reverse flow for malapposition distance (MD) between 0mm and 0.12mm. Chaotic blood flow is usually observed at late diastole and early systole for MD=0mm and 0.12mm but are suppressed for MD=0.06mm. The struts with circular cross section delay the flow chaotic process as compared to square cross-sectional struts at the same MD and also reduce the level of fluctuations found in the flow field. However, further increase in MD can lead to chaotic flow not only at late diastole and early systole, but it also leads to chaotic flow at the end of systole. In all cases, WSS increases above the threshold value (0.5Pa) as MD increases due to the diminishing reverse flow near the artery wall. Increasing MD also results in an elevated WSSG as flow becomes more chaotic, except for square struts at MD=0.06mm.
    Journal of biomechanics. 08/2014; 47(12):2843-2851.


Available from
Oct 20, 2014