Article

Infantile cerebellar-retinal degeneration associated with a mutation in mitochondrial aconitase, ACO2.

Department of Pediatrics A, Ha'Emek Medical Center, Afula, Israel.
The American Journal of Human Genetics (Impact Factor: 11.2). 03/2012; 90(3):518-23. DOI: 10.1016/j.ajhg.2012.01.009
Source: PubMed

ABSTRACT Degeneration of the cerebrum, cerebellum, and retina in infancy is part of the clinical spectrum of lysosomal storage disorders, mitochondrial respiratory chain defects, carbohydrate glycosylation defects, and infantile neuroaxonal dystrophy. We studied eight individuals from two unrelated families who presented at 2-6 months of age with truncal hypotonia and athetosis, seizure disorder, and ophthalmologic abnormalities. Their course was characterized by failure to acquire developmental milestones and culminated in profound psychomotor retardation and progressive visual loss, including optic nerve and retinal atrophy. Despite their debilitating state, the disease was compatible with survival of up to 18 years. Laboratory investigations were normal, but the oxidation of glutamate by muscle mitochondria was slightly reduced. Serial brain MRI displayed progressive, prominent cerebellar atrophy accompanied by thinning of the corpus callosum, dysmyelination, and frontal and temporal cortical atrophy. Homozygosity mapping followed by whole-exome sequencing disclosed a Ser112Arg mutation in ACO2, encoding mitochondrial aconitase, a component of the Krebs cycle. Specific aconitase activity in the individuals' lymphoblasts was severely reduced. Under restrictive conditions, the mutant human ACO2 failed to complement a yeast ACO1 deletion strain, whereas the wild-type human ACO2 succeeded, indicating that this mutation is pathogenic. Thus, a defect in mitochondrial aconitase is associated with an infantile neurodegenerative disorder affecting mainly the cerebellum and retina. In the absence of noninvasive biomarkers, determination of the ACO2 sequence or of aconitase activity in lymphoblasts are warranted in similarly affected individuals, based on clinical and neuroradiologic grounds.

1 Bookmark
 · 
261 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aconitase catalyzes the conversion of citrate to isocitrate in the tricarboxylic acid (TCA) cycle, and its deficiency in humans is associated with an infantile neurodegenerative disorder affecting mainly the cerebellum and retina. Here we investigated the effect of gene knockout and knockdown of the mitochondrial aconitase Acon in Drosophila. Acon-knockout flies were homozygous lethal, indicating that Acon is essential for viability. RNA interference-generated Acon-knockdown flies exhibited a variety of phenotypes, such as reduced locomotor activity, a shortened lifespan, and increased cell death in the developing brain. Metabolomic analysis revealed that acetyl-CoA, citrate/isocitrate, and cis-aconitate were significantly increased, while most metabolites of glycolysis and the TCA cycle were reduced. Reduced ATP and increased triacylglyceride suggested that lipids were used as an energy source because of the impaired glycolysis and TCA cycle. The Acon-knockdown model should facilitate further understanding of the pathophysiology of m-aconitase deficiency in humans.
    Biochemical and Biophysical Research Communications 02/2013; · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Few data are available about the difference between epilepsy in pediatric mitochondrial disorders (MIDs) and adult MIDs. This review focuses on the differences between pediatric and adult mitochondrial epilepsy with regard to seizure type, seizure frequency, and underlying MID. A literature search via Pubmed using the keywords 'mitochondrial', 'epilepsy', 'seizures', 'adult', 'pediatric', and all MID acronyms, was carried out. Frequency of mitochondrial epilepsy strongly depends on the type of MID included and is higher in pediatric compared to adult patients. In pediatric patients, mitochondrial epilepsy is more frequent due to mutations in nDNA-located than mtDNA-located genes and vice versa in adults. In pediatric patients, mitochondrial epilepsy is associated with a syndromic phenotype in half of the patients and in adults more frequently with a non-syndromic phenotype. In pediatric patients, focal seizures are more frequent than generalized seizures and vice versa in adults. Electro-clinical syndromes are more frequent in pediatric MIDs compared to adult MIDs. Differences between pediatric and adult mitochondrial epilepsy concern the onset of epilepsy, frequency of epilepsy, seizure type, type of electro-clinical syndrome, frequency of syndromic versus non-syndromic MIDs, and the outcome. To optimize management of mitochondrial epilepsy, it is essential to differentiate between early and late-onset forms.
    Acta Neurologica Scandinavica 03/2013; · 2.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A great deal of our understanding of mitochondrial function has come from studies of inherited mitochondrial diseases, but still majority of the patients lack molecular diagnosis. Furthermore, effective treatments for mitochondrial disorders do not exist. Developing therapies has been complicated by the fact that the diseases are extremely heterogeneous, and collecting large enough cohorts of similarly affected individuals to properly assess new therapies has been difficult. Next-generation sequencing technologies have in the last few years been shown to be an effective method for the genetic diagnosis of inherited mitochondrial diseases. Here we review the strategies and findings from studies applying next-generation sequencing methods for the genetic diagnosis of mitochondrial disorders. Detailed knowledge of molecular causes also enables collection of homogenous cohorts of patients for therapy trials, and therefore boosts development of intervention.
    British Journal of Pharmacology 10/2013; · 5.07 Impact Factor

Full-text

View
5 Downloads
Available from