Fine mapping of porcine SSC14 QTL and SCD gene effects on fatty acid composition and melting point of fat in a Duroc purebred population.

National Livestock Breeding Center, Nishigo, Fukushima, Japan.
Animal Genetics (Impact Factor: 2.58). 04/2012; 43(2):225-8. DOI: 10.1111/j.1365-2052.2011.02236.x
Source: PubMed

ABSTRACT The stearoyl-CoA desaturase (delta-9-desaturase; SCD) gene is a candidate gene for fatty acid composition. It is located on pig SSC14 in a region where quantitative trait loci (QTL) for fatty acid composition were previously detected in a Duroc purebred population. The objective of the present study was to fine map the QTL, to identify polymorphisms of the pig SCD gene and to examine the effects of SCD polymorphisms on fatty acid composition and melting point of fat in the population. The pigs were examined for fatty acid composition and melting point of inner and outer subcutaneous fat and inter- and intramuscular fat; the number of pigs examined was 479-521. Two SNPs (g.-353C>T and g.-233T>C) were identified in the promoter region of the SCD gene and were completely linked in the pigs from the base generation. In all pigs, 19 microsatellite markers and SCD haplotypes were then genotyped. Different statistical models were applied to evaluate the effects of QTL and the possible causality of the SCD gene variants with respect to the QTL. The results show that all significant QTL for C14:0, C18:0, C18:1 and melting point of fat were detected in the same region, located near the SCD gene. The results also show a significant association between SCD haplotypes and fatty acid composition and fat melting point in this population. These results indicate that the haplotype of the SCD gene has a strong effect on fatty acid composition and melting point of fat.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In pigs, adipose tissue is one of the principal organs involved in the regulation of lipid metabolism. It is particularly involved in the overall fatty acid synthesis with consequences in other lipid-target organs such as muscles and the liver. With this in mind, we have used massive, parallel high-throughput sequencing technologies to characterize the porcine adipose tissue transcriptome architecture in six Iberian x Landrace crossbred pigs showing extreme phenotypes for intramuscular fatty acid composition (three per group). High-throughput RNA sequencing was used to generate a whole characterization of adipose tissue (backfat) transcriptome. A total of 4,130 putative unannotated protein-coding sequences were identified in the 20% of reads which mapped in intergenic regions. Furthermore, 36% of the unmapped reads were represented by interspersed repeats, SINEs being the most abundant elements. Differential expression analyses identified 396 candidate genes among divergent animals for intramuscular fatty acid composition. Sixty-two percent of these genes (247/396) presented higher expression in the group of pigs with higher content of intramuscular SFA and MUFA, while the remaining 149 showed higher expression in the group with higher content of PUFA. Pathway analysis related these genes to biological functions and canonical pathways controlling lipid and fatty acid metabolisms. In concordance with the phenotypic classification of animals, the major metabolic pathway differentially modulated between groups was de novo lipogenesis, the group with more PUFA being the one that showed lower expression of lipogenic genes. These results will help in the identification of genetic variants at loci that affect fatty acid composition traits. The implications of these results range from the improvement of porcine meat quality traits to the application of the pig as an animal model of human metabolic diseases.
    BMC Genomics 12/2013; 14(1):843. · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is growing public concern about reducing saturated fat intake. Stearoyl-CoA desaturase (SCD) is the lipogenic enzyme responsible for the biosynthesis of oleic acid (18∶1) by desaturating stearic acid (18∶0). Here we describe a total of 18 mutations in the promoter and 3' non-coding region of the pig SCD gene and provide evidence that allele T at AY487830:g.2228T>C in the promoter region enhances fat desaturation (the ratio 18∶1/18∶0 in muscle increases from 3.78 to 4.43 in opposite homozygotes) without affecting fat content (18∶0+18∶1, intramuscular fat content, and backfat thickness). No mutations that could affect the functionality of the protein were found in the coding region. First, we proved in a purebred Duroc line that the C-T-A haplotype of the 3 single nucleotide polymorphisms (SNPs) (g.2108C>T; g.2228T>C; g.2281A>G) of the promoter region was additively associated to enhanced 18∶1/18∶0 both in muscle and subcutaneous fat, but not in liver. We show that this association was consistent over a 10-year period of overlapping generations and, in line with these results, that the C-T-A haplotype displayed greater SCD mRNA expression in muscle. The effect of this haplotype was validated both internally, by comparing opposite homozygote siblings, and externally, by using experimental Duroc-based crossbreds. Second, the g.2281A>G and the g.2108C>T SNPs were excluded as causative mutations using new and previously published data, restricting the causality to g.2228T>C SNP, the last source of genetic variation within the haplotype. This mutation is positioned in the core sequence of several putative transcription factor binding sites, so that there are several plausible mechanisms by which allele T enhances 18∶1/18∶0 and, consequently, the proportion of monounsaturated to saturated fat.
    PLoS ONE 01/2014; 9(1):e86177. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We carried out a comprehensive genomic analysis of porcine copy number variants (CNVs) based on whole-genome SNP genotyping data and provided new measures of genomic diversity (number, length and distribution of CNV events) for a highly inbred strain (the Guadyerbas strain). This strain represents one of the most ancient surviving populations of the Iberian breed, and it is currently in serious danger of extinction. CNV detection was conducted on the complete Guadyerbas population, adjusted for genomic waves, and used strict quality criteria, pedigree information and the latest porcine genome annotation. The analysis led to the detection of 65 CNV regions (CNVRs). These regions cover 0.33% of the autosomal genome of this particular strain. Twenty-nine of these CNVRs were identified here for the first time. The relatively low number of detected CNVRs is in line with the low variability and high inbreeding estimated previously for this Iberian strain using pedigree, microsatellite or SNP data. A comparison across different porcine studies has revealed that more than half of these regions overlap with previously identified CNVRs or multicopy regions. Also, a preliminary analysis of CNV detection using whole-genome sequence data for four Guadyerbas pigs showed overlapping for 16 of the CNVRs, supporting their reliability. Some of the identified CNVRs contain relevant functional genes (e.g., the SCD and USP15 genes), which are worth being further investigated because of their importance in determining the quality of Iberian pig products. The CNVR data generated could be useful for improving the porcine genome annotation.
    Animal Genetics 03/2014; · 2.58 Impact Factor