Article

A decision analysis of long-term lithium treatment and the risk of renal failure

Division of Psychiatry, Department of Clinical Sciences, Umeå University, Sweden.
Acta Psychiatrica Scandinavica (Impact Factor: 5.55). 03/2012; 126(3):186-97. DOI: 10.1111/j.1600-0447.2012.01847.x
Source: PubMed

ABSTRACT To establish whether lithium or anticonvulsant should be used for maintenance treatment for bipolar affective disorder (BPAD) if the risks of suicide and relapse were traded off against the risk of end-stage renal disease (ESRD).
Decision analysis based on a systematic literature review with two main decisions: (1) use of lithium or at treatment initiation and (2) the potential discontinuation of lithium in patients with chronic kidney disease (CKD) after 20 years of lithium treatment. The final endpoint was 30 years of treatment with five outcomes to consider: death from suicide, alive with stable or unstable BPAD, alive with or without ESRD.
At the start of treatment, the model identified lithium as the treatment of choice. The risks of developing CKD or ESRD were not relevant at the starting point. Twenty years into treatment, lithium still remained treatment of choice. If CKD had occurred at this point, stopping lithium would only be an option if the likelihood of progression to ESRD exceeded 41.3% or if anticonvulsants always outperformed lithium regarding relapse prevention.
At the current state of knowledge, lithium initiation and continuation even in the presence of long-term adverse renal effects should be recommended in most cases.

1 Follower
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lithium therapy is the gold standard of treatment for patients with Bipolar Disorder. However, despite its effectiveness, it is a potentially hazardous drug requiring regular monitoring of blood levels to ensure toxic levels are not reached. This paper describes the spectrophotometric analysis of Lithium carbonate in solution as a first step in developing a portable home monitoring device for blood lithium analysis.. Using a high-end spectrophotometer, solutions of lithium carbonate (Li2CO3) have been optically fingerprinted. Preliminary measurements indicate that the ultraviolet region shows a strong distinction between different lithium concentrations. Utilizing second derivative absorption curves, the region of 220 nm to 230 nm demonstrated the ability to differentiate between concentrations representing those found in patients. Furthermore, the method could determine to within a 1–6% accuracy whether an unknown solution of Li2CO3 is either inside or outside the high-end of the therapeutic limit.
    Biomedical Optics Express 03/2015; 6(3). DOI:10.1364/BOE.6.001067 · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of lithium treatment on renal function have been previously shown, albeit with discrepancies regarding their relevance. In this study, we examined glomerular filtration rate in patients treated with lithium for up to 33 years. All lithium patients registered from 1980 to 2012 at a Lithium Clinic were screened. Estimated glomerular filtration rate (eGFR) was calculated from serum creatinine concentration using the Modification of Diet in Renal Disease Study Group equation. A cross-sectional evaluation of the last available eGFR of 953 patients was carried out using multivariate regression analysis for gender, current age, and duration of lithium treatment. Survival analysis was subsequently applied to calculate the time on lithium needed to enter the eGFR ranges 45 to 59 mL/min/1.73 m2 (G3a) or 30 to 44 mL/min/1.73 m2 (G3b). Finally, 4-year follow-up of eGFR was examined in subgroups of patients who, after reduction to an eGFR lower than 45 mL/min/1.73 m2 either i) continued lithium at the same therapeutic range or ii) discontinued lithium or continued at concentrations below the therapeutic range (0.5 mmol/L). In the cross-sectional evaluation, eGFR was found to be lower in women (by 3.47 mL/min/1.73 m2), in older patients (0.73 mL/min/1.73 m2 per year of age), and in patients with longer lithium treatment (0.73 mL/min/1.73 m2 per year). Half of the patients treated for longer than 20 years had an eGFR lower than 60 mL/min/1.73 m2. The median time on lithium taken to enter G3a or G3b was 25 years (95% CI, 23.2-26.9) and 31 years (95% CI, 26.6-35.4), respectively. Progression of renal failure throughout the 4-year follow-up after a reduction to an eGFR lower than 45 mL/min/1.73 m2 did not differ between the subgroup who continued lithium as before and the subgroup who either discontinued lithium or continued at concentrations below the therapeutic range. Duration of lithium treatment is to be added to advancing age as a risk factor for reduced glomerular filtration rate. However, renal dysfunction tends to appear after decades of treatment and to progress slowly and irrespective of lithium continuation.
    BMC Medicine 01/2015; 13(1):12. DOI:10.1186/s12916-014-0249-4 · 7.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lithium medication is the gold standard of treatment in Bipolar Disorder patients, preventing and reducing mood swings and suicidality. However, despite its effectiveness, it is a potentially hazardous drug requiring regular monitoring of blood levels to ensure toxic levels are not reached. This paper describes the first steps towards developing a new portable device that can be used by Bipolar Disorder patients to facilitate the analysis of lithium blood levels at home. Solutions of lithium carbonate have been optically fingerprinted using a high-end spectrophotometer. Preliminary measurements indicate that while the visible to near infrared region of the absorption spectra fall heavily within the water band, measurements in the Ultraviolet region show a strong distinction between different lithium concentrations. The optical spectra of Lithium in the 220 nm to 230 nm region demonstrated the ability to differentiate between concentrations representing those found in patients.