Article

Differential regulation of CD4(+) T helper cell responses by curcumin in experimental autoimmune encephalomyelitis

Neuroscience Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN 46202, USA.
The Journal of nutritional biochemistry (Impact Factor: 4.59). 03/2012; 23(11):1498-507. DOI: 10.1016/j.jnutbio.2011.10.002
Source: PubMed

ABSTRACT Nutraceuticals and phytochemicals are important regulators of human health and diseases. Curcumin is a polyphenolic phytochemical isolated from the rhizome of the plant Curcuma longa (turmeric) that has been traditionally used for the treatment of inflammation and wound healing for centuries. Systematic analyses have shown that curcumin exerts its beneficial effects through antioxidant, antiproliferative and anti-inflammatory properties. We and others have shown earlier that curcumin ameliorates experimental autoimmune encephalomyelitis (EAE) model for multiple sclerosis. In this study, we show that C57BL/6 mice induced to develop EAE express elevated levels of interferon (IFN) γ and interleukin (IL)-17 in the central nervous system (CNS) and lymphoid organs that decreased significantly following in vivo treatment with curcumin. The EAE mice also showed elevated expression of IL-12 and IL-23 that decreased after treatment with curcumin. Ex vivo and in vitro treatment with curcumin resulted in a dose-dependent decrease in the secretion of IFNγ, IL-17, IL-12 and IL-23 in culture. The inhibition of EAE by curcumin was also associated with an up-regulation of IL-10, peroxisome proliferator activated receptor γ and CD4(+)CD25(+)Foxp3(+) Treg cells in the CNS and lymphoid organs. These findings highlight that curcumin differentially regulates CD4(+) T helper cell responses in EAE.

0 Followers
 · 
128 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the effect of phytonutrients (PN) supplied postruminally on nutrient utilization, gut microbial ecology, immune response, and productivity of lactating dairy cows. Eight ruminally cannulated Holstein cows were used in a replicated 4 × 4 Latin square. Experimental periods lasted 23 d, including 14-d washout and 9-d treatment periods. Treatments were control (no PN) and daily doses of 2 g/cow of either curcuma oleoresin (curcumin), garlic extract (garlic), or capsicum oleoresin (capsicum). Phytonutrients were pulse-dosed into the abomasum of the cows, through the rumen cannula, 2 h after feeding during the last 9 d of each experimental period. Dry matter intake was not affected by PN, although it tended to be lower for the garlic treatment compared with the control. Milk yield was decreased (2.2 kg/d) by capsicum treatment compared with the control. Feed efficiency, milk composition, milk fat and protein yields, milk N efficiency, and 4.0% fat-corrected milk yield were not affected by treatment. Rumen fermentation variables, apparent total-tract digestibility of nutrients, N excretion with feces and urine, and diversity of fecal bacteria were also not affected by treatment. Phytonutrients had no effect on blood chemistry, but the relative proportion of lymphocytes was increased by the capsicum treatment compared with the control. All PN increased the proportion of total CD4(+) cells and total CD4(+) cells that co-expressed the activation status signal and CD25 in blood. The percentage of peripheral blood mononuclear cells (PBMC) that proliferated in response to concanavalin A and viability of PBMC were not affected by treatment. Cytokine production by PBMC was not different between control and PN. Expression of mRNA in liver for key enzymes in gluconeogenesis, fatty acid oxidation, and response to reactive oxygen species were not affected by treatment. No difference was observed due to treatment in the oxygen radical absorbance capacity of blood plasma but, compared with the control, garlic treatment increased 8-isoprostane levels. Overall, the PN used in this study had subtle or no effects on blood cells and blood chemistry, nutrient digestibility, and fecal bacterial diversity, but appeared to have an immune-stimulatory effect by activating and inducing the expansion of CD4 cells in dairy cows. Capsicum treatment decreased milk yield, but this and other effects observed in this study should be interpreted with caution because of the short duration of treatment.
    Journal of Dairy Science 10/2013; 96(12). DOI:10.3168/jds.2013-7089 · 2.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Curcumin is the principal curcuminoid of the popular Indian spice turmeric and has attracted increasing attention for the treatment of a range of conditions. Research into its potential as a treatment for depression is still in its infancy, although several potential antidepressant mechanisms of action have been identified. Research completed to date on the multiple effects of curcumin is reviewed in this paper, with a specific emphasis on the biological systems that are compromised in depression. The antidepressant effects of curcumin in animal models of depression are summarised, and its influence on neurotransmitters such as serotonin and dopamine is detailed. The effects of curcumin in moderating hypothalamus-pituitary-adrenal disturbances, lowering inflammation and protecting against oxidative stress, mitochondrial damage, neuroprogression and intestinal hyperpermeability, all of which are compromised in major depressive disorder, are also summarised. With increasing interest in natural treatments for depression, and efforts to enhance current treatment outcomes, curcumin is presented as a promising novel, adjunctive or stand-alone natural antidepressant.
    Journal of Psychopharmacology 10/2012; 26(12). DOI:10.1177/0269881112458732 · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Circulating Foxp3(+) regulatory T cells (Treg) may arise in the thymus (natural Treg, nTreg) or through the adaptive upregulation of Foxp3 after T cell activation (induced Treg, iTreg). In this brief review, we explore evidence for the formation and function of iTreg during pathologic conditions. Determining the ontogeny and function of Treg populations has relied on the use of manipulated systems in which either iTreg or nTreg are absent, or lineage tracing of T cell clones through repertoire analyses. iTreg appear particularly important at mucosal interfaces. iTreg can also ameliorate tissue-specific autoimmunity and are a prominent source of tumor-infiltrating Treg in some models. However, under many conditions, including in CNS autoimmunity, diabetes, and some tumor systems, iTreg formation appears limited. The immunological contribution of iTreg is thus highly context dependent. Deciphering immune parameters responsible for iTreg formation and their role in modulating pathologic immune responses will be important.
    Cellular Immunology 10/2012; 279(1):60-65. DOI:10.1016/j.cellimm.2012.09.009 · 1.87 Impact Factor