Article

Regis J, Tuleasca C. Fifteen years of Gamma Knife surgery for trigeminal neuralgia in the Journal of Neurosurgery: history of a revolution in functional neurosurgery. J Neurosurg.115(suppl):2-7

Functional and Stereotactic Neurosurgery Department, Aix-Marseille Univ, and Timone University Hospital, Marseille, France.
Journal of Neurosurgery (Impact Factor: 3.15). 12/2011; 115 Suppl:2-7.
Source: PubMed
Download full-text

Full-text

Available from: Constantin Tuleasca, Jul 18, 2015
1 Follower
 · 
49 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECT: The goal of this study was to establish whether clear patterns of initial pain freedom could be identified when treating patients with classic trigeminal neuralgia (TN) by using Gamma Knife surgery (GKS). The authors compared hypesthesia and pain recurrence rates to see if statistically significant differences could be found. METHODS: Between July 1992 and November 2010, 737 patients presenting with TN underwent GKS and prospective evaluation at Timone University Hospital in Marseille, France. In this study the authors analyzed the cases of 497 of these patients, who participated in follow-up longer than 1 year, did not have megadolichobasilar artery- or multiple sclerosis-related TN, and underwent GKS only once; in other words, the focus was on cases of classic TN with a single radiosurgical treatment. Radiosurgery was performed with a Leksell Gamma Knife (model B, C, or Perfexion) using both MR and CT imaging targeting. A single 4-mm isocenter was positioned in the cisternal portion of the trigeminal nerve at a median distance of 7.8 mm (range 4.5-14 mm) anterior to the emergence of the nerve. A median maximum dose of 85 Gy (range 70-90 Gy) was delivered. Using empirical methods and assisted by a chart with clear cut-off periods of pain free distribution, the authors were able to divide patients who experienced freedom from pain into 3 separate groups: patients who became pain free within the first 48 hours post-GKS; those who became pain free between 48 hours and 30 days post-GKS; and those who became pain free more than 30 days after GKS. RESULTS: The median age in the 497 patients was 68.3 years (range 28.1-93.2 years). The median follow-up period was 43.75 months (range 12-174.41 months). Four hundred fifty-four patients (91.34%) were initially pain free within a median time of 10 days (range 1-459 days) after GKS. One hundred sixty-nine patients (37.2%) became pain free within the first 48 hours (Group PF(≤ 48 hours)), 194 patients (42.8%) between posttreatment Day 3 and Day 30 (Group PF((>48 hours, ≤ 30 days))), and 91 patients (20%) after 30 days post-GKS (Group PF(>30 days)). Differences in postoperative hypesthesia were found: in Group PF(≤ 48 hours) 18 patients (13.7%) developed postoperative hypesthesia, compared with 30 patients (19%) in Group PF((>48 hours, ≤ 30 days)) and 22 patients (30.6%) in Group PF(>30 days) (p = 0.014). One hundred fifty-seven patients (34.4%) who initially became free from pain experienced a recurrence of pain with a median delay of 24 months (range 0.62-150.06 months). There were no statistically significant differences between the patient groups with respect to pain recurrence: 66 patients (39%) in Group PF(≤ 48 hours) experienced pain recurrence, compared with 71 patients (36.6%) in Group PF((>48 hours, ≤ 30 days)) and 27 patients (29.7%) in Group PF(>30 days) (p = 0.515). CONCLUSIONS: A substantial number of patients (169 cases, 37.2%) became pain free within the first 48 hours. The rate of hypesthesia was higher in patients who became pain free more than 30 days after GKS, with a statistically significant difference between patient groups (p = 0.014).
    Journal of Neurosurgery 12/2012; 117(Suppl):181-188. DOI:10.3171/2012.8.GKS121015 · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To identify patterns of initially pain freedom response in patients with classical trigeminal neuralgia (CTN) with Gamma Knife surgery (GKS) and compare their associated hypoesthesia and recurrence rates. Methods: In this study we analysed only 497 patients treated between July 1992 and November 2010, with a follow-up longer than 1 year, after excluding megadolichobasilar artery and multiple sclerosis related trigeminal neuralgia, as well as the second GKS treatments so as to have only cases with CTN and single radiosurgical treatment. GKS using a Gamma Knife (model B or C or Perfexion) was performed, based on both MRI and computer tomography (CT) targeting. A single 4-mm isocenter was positioned in the cisternal portion of the trigeminal nerve at a median distance of 7.8 mm (range 4.5-14) anteriorly to the emergence of the nerve. A median maximum dose of 85 Gy (range 70-90) was delivered. After empiric methods but also by using a chart with clear cut-off periods of pain free distribution, we were able to divide the initially pain free patients into 3 separate groups: within the first 48 hours, after 48 hours till 30 days and after 30 days, respectively. Results: The median follow- up period was 43.75 months (range 12-174.41). Four hundred and fifty-four patients (91.75%) were initially pain free in a median time of 10 days (range 1-459): 169 (37.2%) became pain free within the first 48 hours (pf<=48h), compared to 194 (42.8%) between the 3-rd day and the day 30 (pf(>48 h, <=30d)), inclusively and 91 (20%) patients after 30 days (pf>30d). Differences in terms of postoperative hypoesthesia were found with a p value of 0.014 as follows: the group pf<=48h had 18 (13.7%) compared to pf(>48h, <=30d) with 30 (19%) and pf >30d with 22 (30.5%) patients developing a postoperative GKS hypoesthesia. One hundred and fifty seven (34.4%) patients initially pain free experienced a recurrence with a median delay of 24 months (range 0.62-150.06). There were no statistically significant differences between the three groups concerning recurrence (p value of 0.515). Conclusions: An important number of patients (169 cases, 37.2%) became pain free in the first 48 hours. Hypoesthesia rate was higher within the group becoming pain free after 30 days with a statistically significant difference between the three populations (p= 0.014). Further analysis will eventually help elucidating the differences observed among groups. Disclosure: No significant relationships.
    The 11-th Congress of the International Stereotactic Radiosurgery Society (ISRS), Toronto, Canada; 06/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Common treatments for trigeminal neuralgia (TN) include percutaneous techniques, microvascular decompression (MVD), and gamma knife radiosurgery (GK). While MVD is considered the gold standard for treatment, percutaneous techniques remain an effective option for select patients. To review the historical development, advantages, and limitations of the most common percutaneous procedures for TN: balloon compression (BC), glycerol rhizotomy (GR), and radiofrequency thermocoagulation (RF). Prior publications reporting clinical outcomes after BC, GR, and RF were reviewed and included. Operative technique was based on the experience of the primary surgeon and senior author. All three percutaneous techniques (BC, GR, and RF) provide effective pain relief but differ in method and specificity of nerve injury. BC selectively injures larger pain fibers while sparing small fibers and does not require an awake, cooperative patient. Pain control rates up to 91% at 6 months and 66% at 3 years have been reported. RF allows for somatotopic nerve mapping, selective division lesioning, and provides pain relief in up to 97% of patients initially and 58% at 5 years. Multiple treatments improve outcomes but carry significant morbidity risk. GR offers similar pain-free outcomes of 90% at 6 months and 54% at 3 years but with higher complication rates (25% vs. 16%) compared to BC. Advantages to percutaneous techniques include shorter procedure duration, minimal anesthesia risk, and in the case of GR and RF, immediate patient feedback. Percutaneous treatments for TN remain safe, simple, and effective for achieving good pain control while minimizing procedural risk.
    Neurosurgery 09/2013; 10(1). DOI:10.1227/NEU.00000000000001687 · 3.03 Impact Factor
Show more