Article

Effects of low-level laser therapy (GaAs) in an animal model of muscular damage induced by trauma.

Laboratório de Fisiologia e Bioquímica do Exercício, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105-Bairro Universitário, 88806-000, Criciúma, SC, Brazil, .
Lasers in Medical Science (Impact Factor: 2.42). 03/2012; DOI: 10.1007/s10103-012-1075-6
Source: PubMed

ABSTRACT It has been demonstrated that reactive oxygen species (ROS) formation and oxidative damage markers are increased after muscle damage. Recent studies have demonstrated that low-level laser therapy (LLLT) modulates many biochemical processes mainly those related to reduction of muscular injures, increment of mitochondrial respiration and ATP synthesis, as well as acceleration of the healing process. The objective of the present investigation was to verify the influence of LLLT in some parameters of muscular injury, oxidative damage, antioxidant activity, and synthesis of collagen after traumatic muscular injury. Adult male Wistar rats were divided randomly into three groups (n = 6), namely, sham (uninjured muscle), muscle injury without treatment, and muscle injury with LLLT (GaAs, 904 nm). Each treated point received 5 J/cm(2) or 0.5 J of energy density (12.5 s) and 2.5 J per treatment (five regions). LLLT was administered 2, 12, 24, 48, 72, 96, and 120 h after muscle trauma. The serum creatine kinase activity was used as an index of skeletal muscle injury. Superoxide anion, thiobarbituric acid reactive substance (TBARS) measurement, and superoxide dismutase (SOD) activity were used as indicators of oxidative stress. In order to assess the synthesis of collagen, levels of hydroxyproline were measured. Our results have shown that the model of traumatic injury induces a significant increase in serum creatine kinase activity, hydroxyproline content, superoxide anion production, TBARS level, and activity of SOD compared to control. LLLT accelerated the muscular healing by significantly decreasing superoxide anion production, TBARS levels, the activity of SOD, and hydroxyproline content. The data strongly indicate that increased ROS production and augmented collagen synthesis are elicited by traumatic muscular injury, effects that were significantly decreased by LLLT.

Full-text

Available from: Débora L Scheffer, Jun 12, 2014
2 Followers
 · 
125 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low-level laser therapy (LLLT) has been actively used for nearly 40 yr, during which time it has been known to reduce pain, inflammation, and edema. It also has the ability to promote healing of wounds, including deep tissues and nerves, and prevent tissue damage through cell death. Much of the landmark research was done by the National Aeronautics and Space Administration (NASA), and these studies provided a springboard for many additional basic science studies. Few current clinical studies in orthopaedics have been performed, yet only in the past few years have basic science studies outlined the mechanisms of the effect of LLLT on the cell and subsequently the organism. This article reviews the basic science of LLLT, gives a historical perspective, and explains how it works, exposes the controversies and complications, and shows the new immediately applicable information in orthopaedics.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective: The purpose of this study was to investigate the radioprotective features of 940 nm laser on the life span of mice, and absolute counts of blood cells and their proportions in gamma-irradiated mice. Background data: An important feature of laser light is activation of mitotic division and differentiation of cells, which may be useful in activation of hematopoiesis in gamma-irradiated organisms. Materials and methods: Mice were randomly assigned to 11 groups according to the type(s) of influence. Generally, mice were irradiated in three different ways: with laser at different fluences, with gamma irradiation, or by combination of laser at different fluences and gamma irradiation in a different order. Mice were treated with 940 nm laser at 3, 12, or 18 J/cm(2) and/or a lethal dose of gamma irradiation (8.7 Gy). Each group was randomly subdivided into two subgroups, in which the life span of the mice and blood cell counts (on 12th and 45th day after gamma irradiation) were analyzed. Results: Laser (940 nm) at a fluence of 3 J/cm(2) significantly prolonged the life span of gamma-irradiated mice (p<0.05). In the same group, counts of white blood cells, lymphocytes, and neutrophils were higher on day 12 than in the gamma group. On day 45 after gamma irradiation, some signs of hematopoiesis repair were found in blood. There were no significant differences in counts of erythrocytes, monocytes, neutrophils, or the proportion of neutrophils between this group and the control group. Conclusions: In summary, 940 nm laser at a fluence of 3 J/cm(2) demonstrates radioprotective features in an experiment with lethally irradiated mice. Mechanisms responsible for this effect will be investigated in further studies.
    Photomedicine and Laser Surgery 02/2015; 33(2). DOI:10.1089/pho.2014.3824 · 1.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the study described here was to investigate the effects of pulsed ultrasound and gold nanoparticles (AuNPs) on behavioral, inflammatory and oxidative stress parameters in an experimental model of overuse. Wistar rats performed 21 d of exercise on a treadmill at different intensities and were exposed to ultrasound in the presence or absence of AuNPs. The overuse model promoted behavioral changes and increased creatine kinase, superoxide dismutase and glutathione peroxidase activity, as well as the levels of superoxide, nitrotyrosine, nitric oxide, thiobarbituric acid reactive substance, carbonyl, tumor necrosis factor α and interleukin-6. These values were significantly decreased by AuNPs and by AuNPs plus ultrasound. Catalase activity remained unchanged and the glutathione level increased significantly after exposure to AuNPs plus ultrasound. These results suggest a susceptibility to anxiety as well as elevated levels of oxidative stress. However, therapeutic interventions with AuNPs plus ultrasound reduced the production of oxidants and oxidative damage and improved the anti-oxidant defense system.
    Ultrasound in Medicine & Biology 11/2014; 41(1). DOI:10.1016/j.ultrasmedbio.2014.08.020 · 2.10 Impact Factor

Similar Publications