Article

Tract-specific analysis of white matter integrity disruption in schizophrenia.

Department of Diagnostic Radiology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, Japan.
Psychiatry Research (Impact Factor: 2.68). 03/2012; 201(2):136-43. DOI: 10.1016/j.pscychresns.2011.07.010
Source: PubMed

ABSTRACT Several studies have suggested that white matter integrity is disrupted in some brain regions in patients with schizophrenia. The purpose of this study was to assess the white matter integrity of the cingulum, uncinate fasciculus, fornix, and corpus callosum using diffusion tensor imaging (DTI). Participants comprised 39 patients with schizophrenia (19 males and 20 females) and 40 age-matched normal controls (20 males and 20 females). We quantitatively assessed the fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of the anterior cingulum, body of the cingulum, uncinate fasciculus, fornix, and corpus callosum on a tract-specific basis using diffusion tensor tractography (DTT). Group differences in FA and ADC between the patients and normal controls were sought. Additional exploratory analyses of the relationship between the FA or ADC and four clinical parameters (i.e., illness duration, positive symptom scores, negative symptom scores, and medication dosage) were performed. Results were analyzed in gender-combined and gender-separated group comparisons. FA was significantly lower on both sides of the anterior cingulum, uncinate fasciculus, and fornix in the schizophrenia patients irrespective of gender group separation. In the gender-combined analyses, significantly higher ADC values were demonstrated in the schizophrenia patients in both sides of the anterior cingulum, body of the cingulum and uncinate fasciculus, the left fornix, and the corpus callosum, compared with those of the normal controls. In the gender-separated analyses, the male patients showed higher ADC in the left anterior cingulum, the bilateral cingulum bodies, and the bilateral uncinate fasciculi. The female patients showed higher ADC in the right anterior cingulum, the left fornix, and the bilateral uncinate fasciculus. In correlation analyses, a significant negative correlation was found between illness duration and ADC in the right anterior cingulum in the gender-combined analyses. The gender-separated analyses found that the male patients had a significant negative correlation between negative symptom scores and FA in the right fornix, a positive correlation between illness duration and FA in the right anterior cingulum, and a negative correlation between illness duration and FA in the left uncinate fasciculus. Our DTI study showed that the integrity of white matter is disrupted in patients with schizophrenia. The results of our sub-analyses suggest that changes in FA and ADC may be related to negative symptom scores or illness duration.

0 Bookmarks
 · 
145 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a mental disorder characterized by functional abnormalities in the language network. Anatomical white matter (WM) abnormalities (volume and integrity) have also been reported for this pathology. Nevertheless, few studies have investigated anatomo-functional relationships in schizophrenia, and none has focused on the language comprehension network in relation to various diffusion parameters. We hypothesized that the WM abnormalities that are reflected by several diffusion parameters underlie functional deficits in the language network. Eighteen DSM-IV patients with schizophrenia and 18 healthy controls without any significant differences in sex, age, or level of education were included. First, functional brain activation within the language network was estimated. Then, using diffusion tensor imaging, fractional anisotropy (FA), radial diffusivity (RD), and mean diffusivity (MD) values were extracted within WM regions adjacent to this network and their anatomo-functional relationships were investigated. Compared with healthy participants, both functional and diffusion deficits were observed in patients with schizophrenia. Primarily, an altered diffusion-functional relationship was observed in patients in the left middle temporal region: functional activations were positively correlated with FA, but were negatively correlated with RD. Our findings indicate a close relationship between diffusion and functional deficits in patients with schizophrenia, suggesting that WM integrity disturbance might be one cause of functional alterations in the language network in patients with schizophrenia. Thus, the present multimodal study improves our understanding of the pathophysiology of schizophrenia.
    Schizophrenia Research 08/2013; · 4.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prior diffusion tensor imaging (DTI) studies examining schizotypal personality disorder (SPD) and schizophrenia, separately have shown that compared with healthy controls (HCs), patients show frontotemporal white matter (WM) abnormalities. This is the first DTI study to directly compare WM tract coherence with tractography and fractional anisotropy (FA) across the schizophrenia spectrum in a large sample of demographically matched HCs (n = 55), medication-naive SPD patients (n = 49), and unmedicated/never-medicated schizophrenia patients (n = 22) to determine whether (a) frontal-striatal-temporal WM tract abnormalities in schizophrenia are similar to, or distinct from those observed in SPD; and (b) WM tract abnormalities are associated with clinical symptom severity indicating a common underlying pathology across the spectrum. Compared with both the HC and SPD groups, schizophrenia patients showed WM abnormalities, as indexed by lower FA in the temporal lobe (inferior longitudinal fasciculus) and cingulum regions. SPD patients showed lower FA in the corpus callosum genu compared with the HC group, but this regional abnormality was more widespread in schizophrenia patients. Across the schizophrenia spectrum, greater WM disruptions were associated with greater symptom severity. Overall, frontal-striatal-temporal WM dysconnectivity is attenuated in SPD compared with schizophrenia patients and may mitigate the emergence of psychosis.
    Schizophrenia bulletin. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In patients with schizophrenia neuroimaging studies have revealed global differences with some brain regions showing focal abnormalities. Examining neurocircuitry, diffusion-weighted imaging studies have identified altered structural integrity of white matter in frontal and temporal brain regions and tracts such as the cingulum bundles, uncinate fasciculi, internal capsules and corpus callosum associated with the illness. Furthermore, structural co-variance analyses have revealed altered structural relationships among regional morphology in the thalamus, frontal, temporal and parietal cortices in schizophrenia patients. The distributed nature of these abnormalities in schizophrenia suggests that multiple brain circuits are impaired, a neural feature that may be better addressed with network level analyses. However, even with the advent of these newer analyses, a large amount of variability in findings remains, likely partially due to the considerable heterogeneity present in this disorder.
    Frontiers in Human Neuroscience 01/2014; 8:653. · 2.91 Impact Factor