Article

Parallel differentiation of embryonic stem cells into different cell types by a single gene-based differentiation system.

University of Wuerzburg, Physiological Chemistry I, Biocenter, Wuerzburg, Germany.
Cellular reprogramming 03/2012; 14(2):106-11. DOI: 10.1089/cell.2011.0067
Source: PubMed

ABSTRACT The generation of defined somatic cell types from pluripotent stem cells represents a promising system for many applications for regenerative therapy or developmental studies. Certain key developmental genes have been shown to be able to influence the fate determination of differentiating stem cells suggesting an alternative differentiation strategy to conventional medium-based methods. Here, we present a system allowing controlled, directed differentiation of embryonic stem cells (ESCs) solely by ectopic expression of single genes. We demonstrate that the myogenic master regulator myoD1 is sufficient to induce formation of skeletal muscle. In contrast to previous studies, our data suggest that myoD1-induced differentiation is independent of additional differentiation-inducing or lineage-promoting signals and occurs even under pluripotency-promoting conditions. Moreover, we demonstrate that single gene-induced differentiation enables the controlled formation of two distinct cell types in parallel. By mixing ES cell lines expressing myoD1 or the neural transcription factor ngn2, respectively, we generated a mixed culture of myocytes and neurons. Our findings provide new insights in the role of key developmental genes during cell fate decisions. Furthermore, this study represents an interesting strategy to obtain mixed cultures of different cells from stem cells, suggesting a valuable tool for cellular development and cell-cell interaction studies.

0 Bookmarks
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies show that combinations of defined key developmental transcription factors (TFs) can reprogram somatic cells to pluripotency or induce cell conversion of one somatic cell type to another. However, it is not clear if single genes can define a cell̀s identity and if the cell fate defining potential of TFs is also operative in pluripotent stem cells in vitro. Here, we show that ectopic expression of the neural TF Neurogenin2 (Ngn2) is sufficient to induce rapid and efficient differentiation of embryonic stem cells (ESCs) into mature glutamatergic neurons. Ngn2-induced neuronal differentiation did not require any additional external or internal factors and occurred even under pluripotency-promoting conditions. Differentiated cells displayed neuron-specific morphology, protein expression, and functional features, most importantly the generation of action potentials and contacts with hippocampal neurons. Gene expression analyses revealed that Ngn2-induced in vitro differentiation partially resembled neurogenesis in vivo, as it included specific activation of Ngn2 target genes and interaction partners. These findings demonstrate that a single gene is sufficient to determine cell fate decisions of uncommitted stem cells thus giving insights into the role of key developmental genes during lineage commitment. Furthermore, we present a promising tool to improve directed differentiation strategies for applications in both stem cell research and regenerative medicine.
    PLoS ONE 01/2012; 7(6):e38651. · 3.53 Impact Factor