beta,gamma-CHF- and beta,gamma-CHCl-dGTP Diastereomers: Synthesis, Discrete P-31 NMR Signatures, and Absolute Configurations of New Stereochemical Probes for DNA Polymerases

Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA.
Journal of the American Chemical Society (Impact Factor: 11.44). 03/2012; 134(21):8734-7. DOI: 10.1021/ja300218x
Source: PubMed

ABSTRACT Deoxynucleoside 5'-triphosphate analogues in which the β,γ-bridging oxygen has been replaced with a CXY group are useful chemical probes to investigate DNA polymerase catalytic and base-selection mechanisms. A limitation of such probes has been that conventional synthetic methods generate a mixture of diastereomers when the bridging carbon substitution is nonequivalent (X ≠ Y). We report here a general solution to this long-standing problem with four examples of β,γ-CXY dNTP diastereomers: (S)- and (R)-β,γ-CHCl-dGTP (12a-1/12a-2) and (S)- and (R)-β,γ-CHF-dGTP (12b-1/12b-2). Central to their preparation was conversion of the prochiral parent bisphosphonic acids to the P,C-dimorpholinamide derivatives 7 of their (R)-mandelic acid monoesters, which provided access to the individual diastereomers 7a-1, 7a-2, 7b-1, and 7b-2 by preparative HPLC. Selective acidic hydrolysis of the P-N bond then afforded "portal" diastereomers, which were readily coupled to morpholine-activated dGMP. Removal of the chiral auxiliary by H(2) (Pd/C) gave the four individual diastereomeric nucleotides 12, which were characterized by (31)P, (1)H, and (19)F NMR spectroscopy and by mass spectrometry. After treatment with Chelex-100 to remove traces of paramagnetic ions, at pH ~10 the diastereomer pairs 12a,b exhibit discrete P(α) and P(β)(31)P resonances. The more upfield P(α) and more downfield P(β) resonances (and also the more upfield (19)F NMR resonance in 12b) are assigned to the R configuration at the P(β)-CHX-P(γ) carbons on the basis of the absolute configurations of the individual diastereomers as determined from the X-ray crystallographic structures of their ternary complexes with DNA and polymerase β.

Download full-text


Available from: Samuel Wilson, Feb 07, 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fluorine atom plays an important role in medicinal chemistry because fluorine substitution has a strong impact on the physical, chemical, and biological properties of bioactive compounds. Such fluorine modifications have also been extensively studied among the pharmaceutically important class of nucleoside phosphonates, nucleotide analogues in which the phosphate group is replaced by the enzymatically and chemically stable phosphonate moiety. The fluorinated nucleoside phosphonates abound with antiviral, antiparasitic, and anticancer properties because they are able to act as inhibitors of important enzymes of nucleoside/nucleotide metabolism. In this paper, we review the biological properties of cyclic and acyclic nucleoside phosphonates modified by the attachment of one or more fluorine atoms to various parts of the molecule, namely to nucleobases, alkylphosphonate groups, cyclic or acyclic linkers, or to prodrug moieties.
    Medicinal Research Reviews 07/2013; 33(6). DOI:10.1002/med.21296 · 8.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nucleoside triphosphates are moldable entities that can easily be functionalized at various locations. The enzymatic polymerization of these modified triphosphate analogues represents a versatile platform for the facile and mild generation of (highly) functionalized nucleic acids. Numerous modified triphosphates have been utilized in a broad palette of applications spanning from DNA-tagging and -labeling to the generation of catalytic nucleic acids. This review will focus on the recent progress made in the synthesis of modified nucleoside triphosphates as well as on the understanding of the mechanisms underlying their polymerase acceptance. In addition, the usefulness of chemically altered dNTPs in SELEX and related methods of in vitro selection will be highlighted, with a particular emphasis on the generation of modified DNA enzymes (DNAzymes) and DNA-based aptamers.
    Molecules 12/2012; 17(11):13569-91. DOI:10.3390/molecules171113569 · 2.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kinetics studies of dNTP analogs having pyrophosphate-mimicking β,γ-pCXYp leaving groups with variable X,Y-substitution reveal striking differences in the chemical transition-state energy for DNA polymerase β that depend on all aspects of base pairing configurations, including whether the incoming dNTP is a purine or pyrimidine and if base pairings are right (T•A, G•C) or wrong (T•G, G•T). Brønsted plots of the catalytic rate constant (log(kpol)) vs pKa4 for the leaving group exhibit Linear Free Energy Relationships (LFERs) with negative slopes ranging from -0.6 to -2.0, consistent with chemical rate-determining transition-states in which the active site adjusts to charge stabilization demand during chemistry depending on base-pair configuration. The Brønsted slopes and also intercepts differ dramatically, and provide the first direct evidence that dNTP base recognition by the enzyme-primer-template complex triggers a conformational change in the catalytic region of the active site, that significantly modifies the rate-determining chemical step.
    Biochemistry 03/2014; 53(11). DOI:10.1021/bi500101z · 3.19 Impact Factor