Article

Redundant Notch1 and Notch2 signaling is necessary for IFNγ secretion by T helper 1 cells during infection with Leishmania major.

Department of Biochemistry, WHO Immunology Research and Training Center, University of Lausanne, Epalinges, Switzerland.
PLoS Pathogens (Impact Factor: 8.06). 03/2012; 8(3):e1002560. DOI: 10.1371/journal.ppat.1002560
Source: PubMed

ABSTRACT The protective immune response to intracellular parasites involves in most cases the differentiation of IFNγ-secreting CD4(+) T helper (Th) 1 cells. Notch receptors regulate cell differentiation during development but their implication in the polarization of peripheral CD4(+) T helper 1 cells is not well understood. Of the four Notch receptors, only Notch1 (N1) and Notch2 (N2) are expressed on activated CD4(+) T cells. To investigate the role of Notch in Th1 cell differentiation following parasite infection, mice with T cell-specific gene ablation of N1, N2 or both (N1N2(ΔCD4Cre)) were infected with the protozoan parasite Leishmania major. N1N2(ΔCD4Cre) mice, on the C57BL/6 L. major-resistant genetic background, developed unhealing lesions and uncontrolled parasitemia. Susceptibility correlated with impaired secretion of IFNγ by draining lymph node CD4(+) T cells and increased secretion of the IL-5 and IL-13 Th2 cytokines. Mice with single inactivation of N1 or N2 in their T cells were resistant to infection and developed a protective Th1 immune response, showing that CD4(+) T cell expression of N1 or N2 is redundant in driving Th1 differentiation. Furthermore, we show that Notch signaling is required for the secretion of IFNγ by Th1 cells. This effect is independent of CSL/RBP-Jκ, the major effector of Notch receptors, since L. major-infected mice with a RBP-Jκ deletion in their T cells were able to develop IFNγ-secreting Th1 cells, kill parasites and heal their lesions. Collectively, we demonstrate here a crucial role for RBP-Jκ-independent Notch signaling in the differentiation of a functional Th1 immune response following L. major infection.

Download full-text

Full-text

Available from: Fabienne Tacchini-Cottier, Jun 22, 2015
1 Follower
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Severe aplastic anemia (AA) is a bone marrow (BM) failure (BMF) disease frequently caused by aberrant immune destruction of blood progenitors. Although a Th1-mediated pathology is well described for AA, molecular mechanisms driving disease progression remain ill defined. The NOTCH signaling pathway mediates Th1 cell differentiation in the presence of polarizing cytokines, an action requiring enzymatic processing of NOTCH receptors by γ-secretase. Using a mouse model of AA, we demonstrate that expression of both intracellular NOTCH1(IC) and T-BET, a key transcription factor regulating Th1 cell differentiation, was increased in spleen and BM-infiltrating T cells during active disease. Conditionally deleting Notch1 or administering γ-secretase inhibitors (GSIs) in vivo attenuated disease and rescued mice from lethal BMF. In peripheral T cells from patients with untreated AA, NOTCH1(IC) was significantly elevated and bound to the TBX21 promoter, showing NOTCH1 directly regulates the gene encoding T-BET. Treating patient cells with GSIs in vitro lowered NOTCH1(IC) levels, decreased NOTCH1 detectable at the TBX21 promoter, and decreased T-BET expression, indicating that NOTCH1 signaling is responsive to GSIs during active disease. Collectively, these results identify NOTCH signaling as a primary driver of Th1-mediated pathogenesis in AA and may represent a novel target for therapeutic intervention.
    Journal of Experimental Medicine 06/2013; 210(7). DOI:10.1084/jem.20112615 · 13.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An impaired anti-tumor immunity is found in patients with cancer and represents a major obstacle in the successful development of different forms of immunotherapy. Signaling through Notch receptors regulates the differentiation and function of many cell types, including immune cells. However, the effect of Notch in CD8+ T cell responses in tumors remains unclear. Thus, we aimed to determine the role of Notch signaling in CD8+ T cells in the induction of tumor-induced suppression. Our results using conditional knockout mice show that Notch-1 and 2 were critical for the proliferation and IFNγ production of activated CD8+ T cells and were significantly decreased in tumor-infiltrating T cells. Conditional transgenic expression of Notch-1 intracellular domain (N1IC) in antigen-specific CD8+ T cells did not affect activation or proliferation of CD8+ T cells, but induced a central memory phenotype and increased cytotoxicity effects and granzyme B levels. Consequently, a higher anti-tumor response and resistance to tumor-induced tolerance were found after adoptive transfer of N1IC-transgenic CD8+ T cells into tumor-bearing mice. Additional results showed that myeloid-derived suppressor cells (MDSC) blocked the expression of Notch-1 and 2 in T cells through nitric oxide-dependent mechanisms. Interestingly, N1IC overexpression rendered CD8+ T cells resistant to the tolerogenic effect induced by MDSC in vivo. Altogether, the results suggest the key role of Notch in the suppression of CD8+ T cell responses in tumors and the therapeutic potential of N1IC in antigen-specific CD8+ T cells to reverse T cell suppression and increase the efficacy of T cell-based immunotherapies in cancer.
    05/2014; 2(8). DOI:10.1158/2326-6066.CIR-14-0021
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pollen allergens are delivered to epithelial surfaces of the upper respiratory tract in conjunction with multiple endogenous adjuvants. We previously demonstrated pollen-mediated modulation of cytokine and chemokine production of dendritic cells, contributing to a Th2-dominated micromilieu. As T helper cell differentiation not only depends on dendritic cell-derived cytokines but also on cell-cell-contact mediated mechanisms, we studied the expression of notch ligands and myeloid differentiation primary response protein 88 (MyD88) in dendritic cells matured in the presence of aqueous birch pollen extracts and pollen-associated E1-phytoprostanes. Human monocyte-derived dendritic cells were stimulated with aqueous birch pollen extracts in the absence or presence of lipopolysaccharide, and mRNA expression levels of notch ligands delta-1 and -4, jagged-1 and -2 and of myd88 were determined. Regulation of Delta-4 and MyD88 by aqueous pollen extracts was assessed on protein level. The contribution of notch signaling to T helper cell differentiation was analyzed in allogeneic T cell stimulation assays. In immature dendritic cells, stimulation with pollen extracts resulted in an induction of both delta and jagged notch ligands. The lipopolysaccharide-induced up-regulation of delta-1 and -4 and of myd88 was decreased by aqueous pollen extracts, whereas jagged expression was induced. Reduction of Delta-4 and MyD88 by aqueous pollen extracts was confirmed on protein level. The Th2-skewing activity was contained in a fraction of aqueous pollen extracts enriched for molecules <3 kDa and was distinct from the previously identified E1-phytoprostanes. Reduction of notch signaling in dendritic cells matured in the presence aqueous pollen extract leads to inhibition of IL-10 and to induction of IL-5 production in naïve T cells differentiated by these dendritic cells. Pollen derived, non-allergenic factors reduce the dendritic cell's expression of Th1 instructing Delta-like notch ligands and of MyD88, thereby promoting Th2 skewing of T helper cell responses.
    World Allergy Organization Journal 12/2015; 8(1):2. DOI:10.1186/s40413-014-0054-8

Similar Publications