Redundant Notch1 and Notch2 Signaling Is Necessary for IFNγ Secretion by T Helper 1 Cells During Infection with Leishmania major

Department of Biochemistry, WHO Immunology Research and Training Center, University of Lausanne, Epalinges, Switzerland.
PLoS Pathogens (Impact Factor: 8.06). 03/2012; 8(3):e1002560. DOI: 10.1371/journal.ppat.1002560
Source: PubMed

ABSTRACT The protective immune response to intracellular parasites involves in most cases the differentiation of IFNγ-secreting CD4(+) T helper (Th) 1 cells. Notch receptors regulate cell differentiation during development but their implication in the polarization of peripheral CD4(+) T helper 1 cells is not well understood. Of the four Notch receptors, only Notch1 (N1) and Notch2 (N2) are expressed on activated CD4(+) T cells. To investigate the role of Notch in Th1 cell differentiation following parasite infection, mice with T cell-specific gene ablation of N1, N2 or both (N1N2(ΔCD4Cre)) were infected with the protozoan parasite Leishmania major. N1N2(ΔCD4Cre) mice, on the C57BL/6 L. major-resistant genetic background, developed unhealing lesions and uncontrolled parasitemia. Susceptibility correlated with impaired secretion of IFNγ by draining lymph node CD4(+) T cells and increased secretion of the IL-5 and IL-13 Th2 cytokines. Mice with single inactivation of N1 or N2 in their T cells were resistant to infection and developed a protective Th1 immune response, showing that CD4(+) T cell expression of N1 or N2 is redundant in driving Th1 differentiation. Furthermore, we show that Notch signaling is required for the secretion of IFNγ by Th1 cells. This effect is independent of CSL/RBP-Jκ, the major effector of Notch receptors, since L. major-infected mice with a RBP-Jκ deletion in their T cells were able to develop IFNγ-secreting Th1 cells, kill parasites and heal their lesions. Collectively, we demonstrate here a crucial role for RBP-Jκ-independent Notch signaling in the differentiation of a functional Th1 immune response following L. major infection.

1 Follower
  • Source
    • "NOTCH signaling is required for T cell development. When NOTCH1 is deleted early in thymocyte development, i.e., when cre expression is driven by the CD4 promoter, NOTCH2 can substitute in a redundant fashion and generate mature T cells with intact IFN- production (Auderset et al., 2012). Thus, we chose to induce deletion of NOTCH1 from IFN-responsive, mature T cells to examine the specific effects of NOTCH1 signaling in peripheral T cells that had developed under normal thymic conditions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Severe aplastic anemia (AA) is a bone marrow (BM) failure (BMF) disease frequently caused by aberrant immune destruction of blood progenitors. Although a Th1-mediated pathology is well described for AA, molecular mechanisms driving disease progression remain ill defined. The NOTCH signaling pathway mediates Th1 cell differentiation in the presence of polarizing cytokines, an action requiring enzymatic processing of NOTCH receptors by γ-secretase. Using a mouse model of AA, we demonstrate that expression of both intracellular NOTCH1(IC) and T-BET, a key transcription factor regulating Th1 cell differentiation, was increased in spleen and BM-infiltrating T cells during active disease. Conditionally deleting Notch1 or administering γ-secretase inhibitors (GSIs) in vivo attenuated disease and rescued mice from lethal BMF. In peripheral T cells from patients with untreated AA, NOTCH1(IC) was significantly elevated and bound to the TBX21 promoter, showing NOTCH1 directly regulates the gene encoding T-BET. Treating patient cells with GSIs in vitro lowered NOTCH1(IC) levels, decreased NOTCH1 detectable at the TBX21 promoter, and decreased T-BET expression, indicating that NOTCH1 signaling is responsive to GSIs during active disease. Collectively, these results identify NOTCH signaling as a primary driver of Th1-mediated pathogenesis in AA and may represent a novel target for therapeutic intervention.
    Journal of Experimental Medicine 06/2013; 210(7). DOI:10.1084/jem.20112615 · 13.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CD4(+) T helper cells are playing critical roles in host defense to pathogens and in the maintenance of immune homeostasis. Naïve CD4(+) T cells, upon antigen-specific recognition, receive signals to differentiate into distinct effector T helper cell subsets characterized by their pattern of cytokine production and specific immune functions. A tight balance between these different subsets ensures proper control of the immune response. There is increasing evidence revealing an important role for Notch signaling in the regulation of CD4(+) T helper cell differentiation or function in the periphery. However, the exact mechanisms involved remain unclear and appear contradictory. In this review, we summarize current knowledge and discuss recent advances in the field to reconcile different views on the role of Notch signaling in the differentiation of functional T helper subsets.
    Current topics in microbiology and immunology 06/2012; 360:115-34. DOI:10.1007/82_2012_227 · 3.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alloreactive T cell immunity mediates the recognition of foreign tissue antigens in recipients of organ transplants. After solid organ transplantation, activation of host T cells by donor alloantigens can trigger rejection of the implanted organ. Global life-long immunosuppression is necessary to prevent or to minimize organ rejection. After bone marrow or hematopoietic cell transplantation (allo-BMT), donor-derived T cells recognize host alloantigens, inducing both beneficial graft-versus-tumor (GVT) effects as well as detrimental graft-versus-host disease (GVHD). Preventing GVHD without eliminating GVT activity is an essential goal to maximize the safety and efficacy of allo-BMT. In this review, we discuss emerging findings that have identified the Notch pathway as a central player in the regulation of T cell alloimmunity. In view of these effects, Notch signaling in T cells should be considered as an attractive new therapeutic target to achieve beneficial immunomodulation following allo-BMT and other types of allogeneic transplantation.
    Current topics in microbiology and immunology 06/2012; 360:135-50. DOI:10.1007/82_2012_226 · 3.47 Impact Factor
Show more