Striated organelle, a cytoskeletal structure positioned to modulate hair-cell transduction

Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL 60612, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 03/2012; 109(12):4473-8. DOI: 10.1073/pnas.1101003109
Source: PubMed

ABSTRACT The striated organelle (SO), a cytoskeletal structure located in the apical region of cochlear and vestibular hair cells, consists of alternating, cross-linked, thick and thin filamentous bundles. In the vestibular periphery, the SO is well developed in both type I and type II hair cells. We studied the 3D structure of the SO with intermediate-voltage electron microscopy and electron microscope tomography. We also used antibodies to α-2 spectrin, one protein component, to trace development of the SO in vestibular hair cells over the first postnatal week. In type I cells, the SO forms an inverted open-ended cone attached to the cell membrane along both its upper and lower circumferences and separated from the cuticular plate by a dense cluster of exceptionally large mitochondria. In addition to contacts with the membrane and adjacent mitochondria, the SO is connected both directly and indirectly, via microtubules, to some stereociliary rootlets. The overall architecture of the apical region in type I hair cells--a striated structure restricting a cluster of large mitochondria between its filaments, the cuticular plate, and plasma membrane--suggests that the SO might serve two functions: to maintain hair-cell shape and to alter transduction by changing the geometry and mechanical properties of hair bundles.

Download full-text


Available from: Anna Lysakowski, Aug 05, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hair cells reside in specialized epithelia in the inner ear of vertebrates, mediating the detection of sound, motion, and gravity. The transduction of these stimuli into a neuronal impulse requires the deflection of stereocilia, which are stabilized by the actin-rich cuticular plate. Recent electrophysiological studies have implicated the vestibular system in pigeon magnetosensation [1]. Here we report the discovery of a single iron-rich organelle that resides in the cuticular plate of cochlear and vestibular hair cells in the pigeon. Transmission electron microscopy, coupled with elemental analysis, has shown that this structure is composed of ferritin-like granules, is approximately 300-600 nm in diameter, is spherical, and in some instances is membrane-bound and/or organized in a paracrystalline array. This organelle is found in hair cells in a wide variety of avian species, but not in rodents or in humans. This structure may function as (1) a store of excess iron, (2) a stabilizer of stereocilia, or (3) a mediator of magnetic detection. Given the specific subcellular location, elemental composition, and evolutionary conservation, we propose that this structure is an integral component of the sensory apparatus in birds.
    Current biology: CB 04/2013; 23(10). DOI:10.1016/j.cub.2013.04.025 · 9.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The precise morphology of the mechanosensitive hair bundle requires seamless integration of actin and microtubule networks. Here, we identify Acf7a (actin crosslinking family protein 7a) as a protein positioned to bridge these distinct cytoskeletal networks in hair cells. By imaging Acf7a-Citrine fusion protein in zebrafish and immunolabeling of vestibular and cochlear mouse hair cells, we show that Acf7a and ACF7 circumscribe, underlie, and are interwoven into the cuticular plate (CP), and they also encircle the basal body of the kinocilium. In cochlear hair cells, ACF7 localization is graded, with the highest concentration near each fonticulus-an area free of F-actin in the region of the CP that contains the basal body. During hair-cell development and regeneration, Acf7a precedes formation of the hair bundle and CP. Finally, electron tomography demonstrates that the ends of microtubules insert into the CP and are decorated with filamentous linkers connecting microtubules to the CP. These observations are consistent with ACF7 being a linker protein, which may shape the cytoskeleton of the hair cell early during hair-bundle genesis.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 01/2014; 34(1):305-12. DOI:10.1523/JNEUROSCI.1880-13.2014 · 6.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the mammalian cochlea, sound is encoded at synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs). Each SGN receives input from a single IHC ribbon-type active zone (AZ) and yet SGNs indefatigably spike up to hundreds of Hz to encode acoustic stimuli with submillisecond precision. Accumulating evidence indicates a highly specialized molecular composition and structure of the presynapse, adapted to suit these high functional demands. However, we are only beginning to understand key features such as stimulus-secretion coupling, exocytosis mechanisms, exo-endocytosis coupling, modes of endocytosis and vesicle reformation, as well as replenishment of the readily releasable pool. Relating structure and function has become an important avenue in addressing these points and has been applied to normal and genetically manipulated hair cell synapses. Here, we review some of the exciting new insights gained from recent studies of the molecular anatomy and physiology of IHC ribbon synapses.
    Cell and Tissue Research 01/2015; DOI:10.1007/s00441-014-2102-7 · 3.33 Impact Factor
Show more