Prime-boost vaccination with rBCG/rAd35 enhances CD8⁺ cytolytic T-cell responses in lesions from Mycobacterium tuberculosis-infected primates.

Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.
Molecular Medicine (Impact Factor: 4.51). 02/2012; 18(1):647-58. DOI: 10.2119/molmed.2011.00222
Source: PubMed


To prevent the global spread of tuberculosis (TB) infection, a novel vaccine that triggers potent and long-lived immunity is urgently required. A plasmid-based vaccine has been developed to enhance activation of major histocompatibility complex (MHC) class I-restricted CD8⁺ cytolytic T cells using a recombinant Bacille Calmette-Guérin (rBCG) expressing a pore-forming toxin and the Mycobacterium tuberculosis (Mtb) antigens Ag85A, 85B and TB10.4 followed by a booster with a nonreplicating adenovirus 35 (rAd35) vaccine vector encoding the same Mtb antigens. Here, the capacity of the rBCG/rAd35 vaccine to induce protective and biologically relevant CD8⁺ T-cell responses in a nonhuman primate model of TB was investigated. After prime/boost immunizations and challenge with virulent Mtb in rhesus macaques, quantification of immune responses at the single-cell level in cryopreserved tissue specimen from infected organs was performed using in situ computerized image analysis as a technological platform. Significantly elevated levels of CD3⁺ and CD8⁺ T cells as well as cells expressing interleukin (IL)-7, perforin and granulysin were found in TB lung lesions and spleen from rBCG/rAd35-vaccinated animals compared with BCG/rAd35-vaccinated or unvaccinated animals. The local increase in CD8⁺ cytolytic T cells correlated with reduced expression of the Mtb antigen MPT64 and also with prolonged survival after the challenge. Our observations suggest that a protective immune response in rBCG/rAd35-vaccinated nonhuman primates was associated with enhanced MHC class I antigen presentation and activation of CD8⁺ effector T-cell responses at the local site of infection in Mtb-challenged animals.

Download full-text


Available from: Jan Andersson, May 06, 2014

Click to see the full-text of:

Article: Prime-boost vaccination with rBCG/rAd35 enhances CD8⁺ cytolytic T-cell responses in lesions from Mycobacterium tuberculosis-infected primates.

24.31 MB

See full-text
  • Source
    • "Hence the rationale to vaccinate first with a live vaccine and follow with a boost of antigen. Trials currently underway in primates [46] and humans may show whether this approach suggests any advantage. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Vaccination has been spectacularly successful in eradicating or controlling some infectious diseases, and is particularly attractive as an approach to tackling other infectious diseases. Although vaccination against tuberculosis has been done for nearly 100years, it is clearly not that successful since the disease still occurs at epidemic levels in animals and humans in many areas. New approaches to vaccination against TB in humans and animals are currently in the pipeline, but none show either complete protection or sterilization. However, there is evidence to suggest that vaccination may deliver some positive outcomes. Not only should we be investigating new vaccines, but also how vaccines and candidates are used and delivered. There are many reasons to think that this task will not be simple, or perhaps not possible in some cases. We present different aspects of the development of vaccines against TB, outline some complications and suggest some new ways to consider this problem.
    Comparative immunology, microbiology and infectious diseases 08/2012; 36(3). DOI:10.1016/j.cimid.2012.07.003 · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose and Methods: Emergence of the multi-drug resistant (MDR) Mycobacterium tuberculosis (TB) is a big problem in the world. We have developed novel TB vaccines [DNA vaccines encoding HSP65 + IL-12, granulysin or killer-specific secretory protein of 37kDa (Ksp37)] using Hemagglutinating virus of Japan -envelope (HVJ-E). It is suggested that the activity of the TB-specific CTL is one of the most important factor for the resistance to TB and immunity for TB in chronic human TB disease. Therefore, we examined the level of activation of the TB-specific CTL after the administration of these vaccines. Results: HSP65 + IL-12 DNA vaccine showed higher protective efficacy compared with BCG in both mouse and monkey models of TB. It induced the TB-specific CTL in the mouse model of TB, while little level of activity was observed after the injection of BCG. It also showed strong therapeutic efficacy against MDR-TB. In the monkey model, the vaccine augmented the production of IFN-γ and IL-2 from PBL and the therapeutic effect was correlated with the level of IL-2. We next evaluated the potential of DNA vaccine encoding a granulysin, which is an important defensive molecule expressed by human T cells. We found that granulysin-encoding vaccine induced the differentiation of the CTL in vitro and in vivo. It also showed therapeutic efficacy against TB in the monkey as well as the mouse model. The DNA vaccine encoding a Ksp37 also induced the TB-specific CTL in vitro and in vivo in the mouse model. It augmented the production of IL-2, IFN-γ and IL-6 from T cells and spleen cells. A synergistic effect on the activation of the TB-specific CTL was observed by the combination of Ksp37 DNA vaccine with granulysin DNA vaccine. Conclusion: These data indicate that our novel vaccines (HSP65 + IL-12 DNA, granulysin and Ksp37) have a capability to activate the TB-specific CTL and will be very strong protective and therapeutic vaccines against TB.
    Human Vaccines & Immunotherapeutics 12/2012; 9(3). DOI:10.4161/hv.23229 · 2.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Considerable effort has been directed to develop Mycobacterium tuberculosis vaccines to boost bacille Calmette-Guérin or for those who cannot be immunized with bacille Calmette-Guérin. We hypothesized that CD4(+) and CD8(+) T cell responses with a heterologous prime/boost vaccine approach could induce long-lived vaccine efficacy against M. tuberculosis in C57BL/6 mice. We produced an adenovirus vector expressing ID93 (Ad5-ID93) for induction of CD8 T cells to use with our candidate tuberculosis vaccine, ID93/glucopyranosyl lipid adjuvant (GLA)-stable emulsion (SE), which induces potent Th1 CD4 T cells. Ad5-ID93 generates ID93-specific CD8(+) T cell responses and induces protection against M. tuberculosis. When Ad5-ID93 is administered in a prime-boost strategy with ID93/GLA-SE, both CD4(+) and CD8(+) T cells are generated and provide protection against M. tuberculosis. In a MHC class I-deficient mouse model, all groups including the Ad5-ID93 group elicited an Ag-specific CD4(+) T cell response and significantly fewer Ag-specific CD8(+) T cells, but were still protected against M. tuberculosis, suggesting that CD4(+) Th1 T cells could compensate for the loss of CD8(+) T cells. Lastly, the order of the heterologous immunizations was critical. Long-lived vaccine protection was observed only when Ad5-ID93 was given as the boost following an ID93/GLA-SE prime. The homologous ID93/GLA-SE prime/boost regimen also induced long-lived protection. One of the correlates of protection between these two approaches was an increase in the total number of ID93-specific IFN-γ-producing CD4(+) T cells 6 mo following the last immunization. Our findings provide insight into the development of vaccines not only for tuberculosis, but other diseases requiring T cell immunity.
    The Journal of Immunology 07/2013; 191(5). DOI:10.4049/jimmunol.1301161 · 4.92 Impact Factor
Show more