Article

Prime-boost vaccination with rBCG/rAd35 enhances CD8⁺ cytolytic T-cell responses in lesions from Mycobacterium tuberculosis-infected primates.

Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden.
Molecular Medicine (Impact Factor: 4.47). 02/2012; 18(1):647-58. DOI: 10.2119/molmed.2011.00222
Source: PubMed

ABSTRACT To prevent the global spread of tuberculosis (TB) infection, a novel vaccine that triggers potent and long-lived immunity is urgently required. A plasmid-based vaccine has been developed to enhance activation of major histocompatibility complex (MHC) class I-restricted CD8⁺ cytolytic T cells using a recombinant Bacille Calmette-Guérin (rBCG) expressing a pore-forming toxin and the Mycobacterium tuberculosis (Mtb) antigens Ag85A, 85B and TB10.4 followed by a booster with a nonreplicating adenovirus 35 (rAd35) vaccine vector encoding the same Mtb antigens. Here, the capacity of the rBCG/rAd35 vaccine to induce protective and biologically relevant CD8⁺ T-cell responses in a nonhuman primate model of TB was investigated. After prime/boost immunizations and challenge with virulent Mtb in rhesus macaques, quantification of immune responses at the single-cell level in cryopreserved tissue specimen from infected organs was performed using in situ computerized image analysis as a technological platform. Significantly elevated levels of CD3⁺ and CD8⁺ T cells as well as cells expressing interleukin (IL)-7, perforin and granulysin were found in TB lung lesions and spleen from rBCG/rAd35-vaccinated animals compared with BCG/rAd35-vaccinated or unvaccinated animals. The local increase in CD8⁺ cytolytic T cells correlated with reduced expression of the Mtb antigen MPT64 and also with prolonged survival after the challenge. Our observations suggest that a protective immune response in rBCG/rAd35-vaccinated nonhuman primates was associated with enhanced MHC class I antigen presentation and activation of CD8⁺ effector T-cell responses at the local site of infection in Mtb-challenged animals.

0 Bookmarks
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacille Calmette-Guérin (BCG), an attenuated vaccine derived from Mycobacterium bovis, is the current vaccine of choice against tuberculosis (TB). Despite its protection against active TB in children, BCG has failed to protect adults against TB infection and active disease development, especially in developing countries where the disease is endemic. Currently, there is a significant effort toward the development of a new TB vaccine. This review article aims to address publications on recombinant BCG (rBCG) published in the last 5 years, to highlight the strategies used to develop rBCG, with a focus on the criteria used to improve immunological memory and protection compared with BCG. The literature review was done in April 2013, using the key words TB, rBCG vaccine, and memory. This review discusses the BCG strains and strategies currently used for the modification of BCG, including: overexpression of Mycobacterium tuberculosis (Mtb) immunodominant antigens already present in BCG; gene insertion of immunodominant antigens from Mtb absent in the BCG vaccine; combination of introduction and overexpression of genes that are lost during the attenuation process of BCG; BCG modifications for the induction of CD8+ T-cell immune responses and cytokines expressing rBCG. Among the vaccines discussed, VPM1002, also called rBCGΔureC:hly, is currently in human clinical trials. Much progress has been made in the effort to improve BCG, with some promising candidates, but considerable work is still required to address functional long-lasting memory.
    Frontiers in Immunology 01/2014; 5:152.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Viral vectors are promising vaccine candidates for eliciting suitable Ag-specific immune response. Since Mycobacterium tuberculosis (Mtb) normally enters hosts via the mucosal surface of the lung, the best defense against Mtb is mucosal vaccines that are capable of inducing both systemic and mucosal immunity. Although Mycobacterium bovis bacille Calmette-Guérin is the only licensed tuberculosis (TB) vaccine, its efficacy against adult pulmonary forms of TB is variable. In this study, we assessed the effectiveness of a novel mucosal TB vaccine using recombinant human parainfluenza type 2 virus (rhPIV2) as a vaccine vector in BALB/c mice. Replication-incompetent rhPIV2 (M gene-eliminated) expressing Ag85B (rhPIV2-Ag85B) was constructed by reverse genetics technology. Intranasal administration of rhPIV2-Ag85B induced Mtb-specific immune responses, and the vaccinated mice showed a substantial reduction in the number of CFU of Mtb in lungs and spleens. Unlike other viral vaccine vectors, the immune responses against Ag85B induced by rhPIV2-Ag85B immunization had an advantage over that against the viral vector. In addition, it was revealed that rhPIV2-Ag85B in itself has an adjuvant activity through the retinoic acid-inducible gene I receptor. These findings provide further evidence for the possibility of rhPIV2-Ag85B as a novel TB vaccine.
    Vaccine 01/2014; · 3.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The widely used animal models for tuberculosis (TB) display fundamental differences from human TB. Therefore, a validated model that recapitulates human lung TB is attractive for TB research. Here, we describe a unique method for establishment of TB infection in an experimental human lung tissue model. The model is based on cell lines derived from human lungs and primary macrophages from peripheral blood, and display characteristics of human lung tissue including evenly integrated macrophages throughout the epithelium, production of extracellular matrix, stratified epithelia and mucus secretion. Establishment of experimental infection in the model tissue with Mycobacterium tuberculosis, the bacterium that causes TB, resulted in clustering of macrophages at the site of infection, reminiscent of early TB granuloma formation. We quantitated the extent of granuloma formation induced by different strains of mycobacteria and validated our model against findings in other TB models. We found that early granuloma formation is dependent on ESAT-6, which is secreted via the Type VII secretion machinery of virulent mycobacteria. Our model, which can facilitate the discovery of the interactions between mycobacteria and host cells in a physiological environment, is the first lung tissue model described for TB.
    Disease Models and Mechanisms 11/2013; · 4.96 Impact Factor

Full-text (2 Sources)

View
4 Downloads
Available from
May 17, 2014