Preparing a scientific report to the General Assembly on 'Exposures due to the nuclear accident following the Great East-Japan earthquake and tsunami'

Chair of UNSCEAR, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria.
Journal of Radiological Protection (Impact Factor: 1.32). 03/2012; 32(1):N113-8. DOI: 10.1088/0952-4746/32/1/N113
Source: PubMed

ABSTRACT At its 58th session in May 2011, the United Nations Committee on the Effects of Atomic Radiation (UNSCEAR) decided to carry out, once sufficient information was available, a full assessment of the levels of exposure and radiation risks attributable to the Fukushima accident. It envisages a preliminary document for consideration at its 59th session in May of 2012 and a more complete report for the 60th session of the Committee in 2013. This paper summarises the aims and objectives of the project, the scope, the working arrangements as well as the relation of the work to other activities.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The public concern for radioactivity of drinking-water has been increasing in recent years after the rapid development of nuclear power plants, and especially after the Fukushima nuclear accident. In this study, the radioactivity of water samples collected in the vicinity of nuclear facilities from seven provinces in China was measured and an average annual equivalent effective dose derived from drinking-water ingestion was calculated. The results showed that, in winter and spring, the activities of gross α and β ranged from 0.009 Bq/L to 0.200 Bq/L and from 0.067 Bq/L to 0.320 Bq/L, respectively. While, in summer and autumn, the activities of gross a and β varied from 0.002 Bq/L to 0.175 Bq/L and from 0.060 Bq/L to 0.334 Bq/L. Our results indicated that the gross a and β activities in these measured water samples were below the WHO recommended values (0.5 Bq/L for gross α and 1.0 Bq/L for gross β) and the annual equivalent effective dose derived from drinking-water ingestion was at a safe level.
    International Journal of Environmental Research and Public Health 12/2013; 10(12):6863-72. DOI:10.3390/ijerph10126863 · 1.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present here a methodology for health risk assessment adopted by the World Health Organization that provides a framework for estimating risks from the Fukushima nuclear accident after the March 11, 2011 Japanese major earthquake and tsunami. Substantial attention has been given to the possible health risks associated with human exposure to radiation from damaged reactors at the Fukushima Daiichi nuclear power station. Cumulative doses were estimated and applied for each post-accident year of life, based on a reference level of exposure during the first year after the earthquake. A lifetime cumulative dose of twice the first year dose was estimated for the primary radionuclide contaminants ((134)Cs and (137)Cs) and are based on Chernobyl data, relative abundances of cesium isotopes ,and cleanup efforts. Risks for particularly radiosensitive cancer sites (leukemia, thyroid and breast cancer), as well as the combined risk for all solid cancers were considered. The male and female cumulative risks of cancer incidence attributed to radiation doses from the accident, for those exposed at various ages, were estimated in terms of the lifetime attributable risk (LAR). Calculations of LAR were based on recent Japanese population statistics for cancer incidence and current radiation risk models from the Life Span Study of Japanese A-bomb survivors. Cancer risks over an initial period of 15 years after first exposure were also considered. LAR results were also given as a percentage of the lifetime baseline risk (i.e., the cancer risk in the absence of radiation exposure from the accident). The LAR results were based on either a reference first year dose (10 mGy) or a reference lifetime dose (20 mGy) so that risk assessment may be applied for relocated and non-relocated members of the public, as well as for adult male emergency workers. The results show that the major contribution to LAR from the reference lifetime dose comes from the first year dose. For a dose of 10 mGy in the first year and continuing exposure, the lifetime radiation-related cancer risks based on lifetime dose (which are highest for children under 5 years of age at initial exposure), are small, and much smaller than the lifetime baseline cancer risks. For example, after initial exposure at age 1 year, the lifetime excess radiation risk and baseline risk of all solid cancers in females were estimated to be 0.7 · 10(-2) and 29.0 · 10(-2), respectively. The 15 year risks based on the lifetime reference dose are very small. However, for initial exposure in childhood, the 15 year risks based on the lifetime reference dose are up to 33 and 88% as large as the 15 year baseline risks for leukemia and thyroid cancer, respectively. The results may be scaled to particular dose estimates after consideration of caveats. One caveat is related to the lack of epidemiological evidence defining risks at low doses, because the predicted risks come from cancer risk models fitted to a wide dose range (0-4 Gy), which assume that the solid cancer and leukemia lifetime risks for doses less than about 0.5 Gy and 0.2 Gy, respectively, are proportional to organ/tissue doses: this is unlikely to seriously underestimate risks, but may overestimate risks. This WHO-HRA framework may be used to update the risk estimates, when new population health statistics data, dosimetry information and radiation risk models become available.
    Radiation Research 09/2014; DOI:10.1667/RR13779.1 · 2.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An international study under the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) was performed to assess radiological impact of the nuclear accident at the Fukushima-Daiichi Nuclear Power Station (FDNPS) on the marine environment. This work constitutes the first international assessment of this type, drawing upon methodologies that incorporate the most up-to-date radioecological models and knowledge. To quantify the radiological impact on marine wildlife, a suite of state-of-the-art approaches to assess exposures to Fukushima derived radionuclides of marine biota, including predictive dynamic transfer modelling, was applied to a comprehensive dataset consisting of over 500 sediment, 6000 seawater and 5000 biota data points representative of the geographically relevant area during the first year after the accident. The dataset covers the period from May 2011 to August 2012. The method used to evaluate the ecological impact consists of comparing dose (rates) to which living species of interest are exposed during a defined period to critical effects values arising from the literature. The assessed doses follow a highly variable pattern and generally do not seem to indicate the potential for effects. A possible exception of a transient nature is the relatively contaminated area in the vicinity of the discharge point, where effects on sensitive endpoints in individual plants and animals might have occurred in the weeks directly following the accident. However, impacts on population integrity would have been unlikely due to the short duration and the limited space area of the initially high exposures. Our understanding of the biological impact of radiation on chronically exposed plants and animals continues to evolve, and still needs to be improved through future studies in the FDNPS marine environment.
    Science of The Total Environment 01/2014; 487:143–153. · 3.16 Impact Factor


Available from