Enhanced extinction of cocaine seeking in brain-derived neurotrophic factor Val66Met knock-in mice

Department of Pharmacology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.
European Journal of Neuroscience (Impact Factor: 3.18). 03/2012; 35(6):932-9. DOI: 10.1111/j.1460-9568.2012.08021.x
Source: PubMed


The Val66Met polymorphism in the brain-derived neurotropic factor (BDNF) gene results in alterations in fear extinction behavior in both human populations and mouse models. However, it is not clear whether this polymorphism plays a similar role in extinction of appetitive behaviors. Therefore, we examined operant learning and extinction of both food and cocaine self-administration behavior in an inbred genetic knock-in mouse strain expressing the variant Bdnf. These mice provide a unique opportunity to relate alterations in aversive and appetitive extinction learning as well as provide insight into how human genetic variation can lead to differences in behavior. BDNF(Met/Met) mice exhibited a severe deficit in operant learning as demonstrated by an inability to learn the food self-administration task. Therefore, extinction experiments were performed comparing wildtype (BDNF(Val/Val) ) animals to mice heterozygous for the Met allele (BDNF(Val/Met) ), which did not differ in food or cocaine self-administration behavior. In contrast to the deficit in fear extinction previously demonstrated in these mice, we found that BDNF(Val/Met) mice exhibited more rapid extinction of cocaine responding compared to wildtype mice. No differences were found between the genotypes in the extinction of food self-administration behavior or the reinstatement of cocaine seeking, indicating that the effect is specific to extinction of cocaine responding. These results suggest that the molecular mechanisms underlying aversive and appetitive extinction are distinct from one another and BDNF may play opposing roles in the two phenomena.

Download full-text


Available from: Francis S Lee, Oct 02, 2015
28 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug addiction is a chronic, relapsing disorder defined by cyclic patterns of compulsive drug seeking and taking interspersed with episodes of abstinence. While genetic variability may increase the risk of addictive behaviours in an individual, exposure to a drug results in neuroadaptations in interconnected brain circuits which, in susceptible individuals, are believed to underlie the transition to, and maintenance of, an addicted state. These adaptations can occur at the cellular, molecular, or (epi)genetic level and are associated with synaptic plasticity and altered gene expression, the latter being mediated via both factors affecting translation (epigenetics) and transcription (non coding microRNAs) of the DNA or RNA itself. New advances using techniques such as optogenetics have the potential to increase our understanding of the microcircuitry mediating addictive behaviours. However, the processes leading to addiction are complex and multifactorial and thus we face a major contemporary challenge to elucidate the factors implicated in the development and maintenance of an addicted state.
    10/2012; 2012(9810):972607. DOI:10.5402/2012/972607
  • [Show abstract] [Hide abstract]
    ABSTRACT: RATIONALE: Astrocytes play an integral role in modulating synaptic transmission and plasticity, both key mechanisms underlying addiction. However, while astrocytes are capable of releasing chemical transmitters that can modulate neuronal function, the role of these gliotransmitters in mediating behaviors associated with drugs of abuse has been largely unexplored. OBJECTIVES: The objective of the present study was to utilize mice with astrocytes that lack the ability to release chemical transmitters to evaluate the behavioral consequence of impaired gliotransmission on cocaine-related behaviors. These mice have previously been used to examine the role of gliotransmission in sleep homeostasis; however, no studies to date have utilized them in the study of addictive behaviors. METHODS: Mice expressing a dominant-negative SNARE protein selectively in astrocytes (dnSNARE mice) were tested in a variety of behavioral paradigms examining cocaine-induced behavioral plasticity. These paradigms include locomotor sensitization, conditioned place preference followed by cocaine-induced reinstatement of CPP, and cocaine self-administration followed by cue-induced reinstatement of cocaine-seeking behavior. RESULTS: Wild-type and dnSNARE mice demonstrated no significant differences in the development or maintenance of locomotor sensitization. While there were non-significant trends for reduced CPP following a low dose of cocaine, drug-induced reinstatement of CPP is completely blocked in dnSNARE mice. Similarly, while dnSNARE mice demonstrated a non-significant trend toward reduced cocaine self-administration compared with wild-type mice, dnSNARE mice do not demonstrate cue-induced reinstatement in this paradigm. CONCLUSIONS: Gliotransmission is necessary for reinstatement of drug-seeking behaviors by cocaine or associated cues.
    Psychopharmacology 10/2012; 226(1). DOI:10.1007/s00213-012-2897-4 · 3.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent breakthroughs in optogenetic technologies to alter neuronal firing and function with light, combined with cell type-specific transgenic animal lines, has led to important insights into the function of distinct neuronal cell subtypes and afferent connections in the heterogeneously complex striatum. A vital part of the basal ganglia, the striatum is heavily implicated in both motor control and motivation-based behavior; as well as in neurological disorders and psychiatric diseases including Parkinson's Disease, Huntington's Disease, drug addiction, depression, and schizophrenia. Researchers are able to manipulate firing and cell signaling with temporal precision using optogenetics in the two striatal medium spiny neuron (MSN) subpopulations, the striatal interneurons, and striatal afferents. These studies confirmed the classical hypothesis of movement control and reward seeking behavior through direct versus indirect pathway MSNs; illuminated a selective role for TANs in cocaine reward; dissected the roles of glutamatergic and dopaminergic inputs to striatum in reward; and highlighted a role for striatal signaling molecules including an adrenergic G-protein coupled receptor in reward and the rho-GTPase Rac1 in cocaine reward and cocaine induced structural plasticity. This review focuses on how the evolving optogenetic toolbox provides insight into the distinct behavioral roles of striatal cell subpopulations and striatal afferents, which has clinically relevant implications into neurological disorders and psychiatric disease.
    Behavioural brain research 04/2013; 255. DOI:10.1016/j.bbr.2013.04.018 · 3.03 Impact Factor
Show more