Article

Optimizing the Use of Quality Control Samples for Signal Drift Correction in Large-Scale Urine Metabolic Profiling Studies.

Analytical Chemistry (Impact Factor: 5.7). 02/2012;
0 Bookmarks
 · 
112 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Direct infusion mass spectrometry (DIMS)-based untargeted metabolomics measures many hundreds of metabolites in a single experiment. While every effort is made to reduce within-experiment analytical variation in untargeted metabolomics, unavoidable sources of measurement error are introduced. This is particularly true for large-scale multi-batch experiments, necessitating the development of robust workflows that minimise batch-to-batch variation. Here, we conducted a purpose-designed, eight-batch DIMS metabolomics study using nanoelectrospray (nESI) Fourier transform ion cyclotron resonance mass spectrometric analyses of mammalian heart extracts. First, we characterised the intrinsic analytical variation of this approach to determine whether our existing workflows are fit for purpose when applied to a multi-batch investigation. Batch-to-batch variation was readily observed across the 7-day experiment, both in terms of its absolute measurement using quality control (QC) and biological replicate samples, as well as its adverse impact on our ability to discover significant metabolic information within the data. Subsequently, we developed and implemented a computational workflow that includes total-ion-current filtering, QC-robust spline batch correction and spectral cleaning, and provide conclusive evidence that this workflow reduces analytical variation and increases the proportion of significant peaks. We report an overall analytical precision of 15.9 %, measured as the median relative standard deviation (RSD) for the technical replicates of the biological samples, across eight batches and 7 days of measurements. When compared against the FDA guidelines for biomarker studies, which specify an RSD of <20 % as an acceptable level of precision, we conclude that our new workflows are fit for purpose for large-scale, high-throughput nESI DIMS metabolomics studies.
    Analytical and Bioanalytical Chemistry 03/2013; · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The metabolic investigation of the human population is becoming increasingly important in the study of health and disease. The phenotypic variation can be investigated through the application of metabolomics; to provide a statistically robust investigation, the study of hundreds to thousands of individuals is required. In untargeted and MS-focused metabolomic studies this once provided significant hurdles. However, recent innovations have enabled the application of MS platforms in large-scale, untargeted studies of humans. Herein we describe the importance of experimental design, the separation of the biological study into multiple analytical experiments and the incorporation of QC samples to provide the ability to perform signal correction in order to reduce analytical variation and to quantitatively determine analytical precision. In addition, we describe how to apply this in quality assurance processes. These innovations have opened up the capabilities to perform routine, large-scale, untargeted, MS-focused studies.
    Bioanalysis 09/2012; 4(18):2249-64. · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differences in sample collection, biomolecule extraction, and instrument variability introduce bias to data generated by liquid chromatography coupled with mass spectrometry (LC-MS). Normalization is used to address these issues. In this paper, we introduce a new normalization method using the Gaussian process regression model (GPRM) that utilizes information from individual scans within an extracted ion chromatogram (EIC) of a peak. The proposed method is particularly applicable for normalization based on analysis order of LC-MS runs. Our method uses measurement variabilities estimated through LC-MS data acquired from quality control samples to correct for bias caused by instrument drift. Maximum likelihood approach is used to find the optimal parameters for the fitted GPRM. We review several normalization methods and compare their performance with GPRM. To evaluate the performance of different normalization methods, we consider LC-MS data from a study where metabolomic approach is utilized to discover biomarkers for liver cancer. The LC-MS data were acquired by analysis of sera from liver cancer patients and cirrhotic controls. In addition, LC-MS runs from a quality control (QC) sample are included to assess the run to run variability and to evaluate the ability of various normalization method in reducing this undesired variability. Also, ANOVA models are applied to the normalized LC-MS data to identify ions with intensity measurements that are significantly different between cases and controls. One of the challenges in using label-free LC-MS for quantitation of biomolecules is systematic bias in measurements. Several normalization methods have been introduced to overcome this issue, but there is no universally applicable approach at the present time. Each data set should be carefully examined to determine the most appropriate normalization method. We review here several existing methods and introduce the GPRM for normalization of LC-MS data. Through our in-house data set, we show that the GPRM outperforms other normalization methods considered here, in terms of decreasing the variability of ion intensities among quality control runs.
    Proteome Science 11/2013; 11(Suppl 1):S13. · 2.42 Impact Factor