Influence of a temperature-dependent shear viscosity on the azimuthal asymmetries of transverse momentum spectra in ultrarelativistic heavy-ion collisions

Physical Review C (Impact Factor: 3.72). 03/2012; 86(1). DOI: 10.1103/PhysRevC.86.014909
Source: arXiv

ABSTRACT We study the influence of a temperature-dependent shear viscosity over
entropy density ratio $\eta/s$, different shear relaxation times $\tau_\pi$, as
well as different initial conditions on the transverse momentum spectra of
charged hadrons and identified particles. We investigate the azimuthal flow
asymmetries as a function of both collision energy and centrality. The elliptic
flow coefficient turns out to be dominated by the hadronic viscosity at RHIC
energies. Only at higher collision energies the impact of the viscosity in the
QGP phase is visible in the flow asymmetries. Nevertheless, the shear viscosity
near the QCD transition region has the largest impact on the collective flow of
the system. We also find that the centrality dependence of the elliptic flow is
sensitive to the temperature dependence of $\eta/s$.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can been made around an anisotropic background, and the resulting dynamical framework has been dubbed "anisotropic hydrodynamics." I also discuss expectations for the degree of momentum-space anisotropy of the quark gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.
    Nuclear Physics A. 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been over a decade since the first experimental data from gold nuclei collisions at the Relativistic Heavy Ion Collider suggested hydrodynamic behavior. While early ideal hydrodynamical models were surprisingly accurate in their predictions, they ignored that the large longitudinal velocity gradient meant that even small shear viscosity would produce large corrections to the transverse dynamics. In addition, much less was known about the equation of state predicted by lattice calculations of quantum chromodynamics, which predicts a soft region as the degrees of freedom change from quarks to hadrons but no first-order phase transition. Furthermore, the effects of late, dilute stage rescattering were handled within the hydrodynamic framework to temperatures where local kinetic equilibrium is difficult to justify. This dissertation presents a three-dimensional viscous hydrodynamics code with a realistic equation of state coupled consistently to a hadron resonance gas calculation. The code presented here is capable of making significant comparisons to experimental data as part of an effort to learn about the structure of experimental constraints on the microscopic interactions of dense, hot quark matter.

Full-text (2 Sources)

Available from
May 29, 2014