• Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE(S):: There is limited information on full-length genome sequences and the early evolution of transmitted HIV-1 subtype C viruses, which constitute the majority of viruses spread in Africa. The purpose of this study was to characterize the earliest changes across the genome of subtype C viruses following transmission, to better understand early control of viremia. DESIGN:: We derived the near full-length genome sequence responsible for clinical infection from five HIV subtype C-infected individuals with different disease progression profiles and tracked adaptation to immune responses in the first 6 months of infection. METHODS:: Near full-length genomes were generated by single genome amplification and direct sequencing. Sequences were analyzed for amino acid mutations associated with cytotoxic T lymphocyte (CTL) or antibody-mediated immune pressure, and for reversion. RESULTS:: Fifty-five sequence changes associated with adaptation to the new host were identified, with 38% attributed to CTL pressure, 35% to antibody pressure, 16% to reversions and the remainder were unclassified. Mutations in CTL epitopes were most frequent in the first 5 weeks of infection, with the frequency declining over time with the decline in viral load. CTL escape predominantly occurred in nef, followed by pol and env. Shuffling/toggling of mutations was identified in 81% of CTL epitopes, with only 7% reaching fixation within the 6-month period. CONCLUSION:: There was rapid virus adaptation following transmission, predominantly driven by CTL pressure, with most changes occurring during high viremia. Rapid escape and complex escape pathways provide further challenges for vaccine protection.
    AIDS (London, England) 02/2013; 27(4):507-518. · 4.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: A modest change in HIV-1 fitness can have a significant impact on viral quasispecies evolution and viral pathogenesis, transmission and disease progression. To determine the impact of immune escape mutations selected by cytotoxic T lymphocytes (CTL) on viral fitness in the context of the cognate transmitted/founder (T/F) genome, we developed a new competitive fitness assay using molecular clones of T/F genomes lacking exogenous genetic markers and a highly sensitive and precise parallel allele-specific sequencing (PASS) method. RESULTS: The T/F and mutant viruses were competed in CD4+ T-cell enriched cultures, relative proportions of viruses were assayed after repeated cell-free passage, and fitness costs were estimated by mathematical modeling. Naturally occurring HLA B57-restricted mutations involving the TW10 epitope in Gag and two epitopes in Tat/Rev and Env were assessed independently and together. Compensatory mutations, which restored replication fitness to CTL escape mutants, were also assessed. A principal TW10 escape mutation, T242N, led to a 42% reduction in replication fitness but T247I and G248A mutations in the same epitope restored fitness to wild-type levels. No fitness difference was observed between the T/F and a naturally selected variant carrying the early CTL escape mutation (R355K) in Env and a reversion mutation in the Tat/Rev overlapping region. CONCLUSIONS: These findings reveal a broad spectrum of fitness costs to CTL escape mutations in T/F viral genomes, similar to recent findings reported for neutralizing antibody escape mutations, and highlight the extraordinary plasticity and adaptive potential of the HIV-1 genome. Analysis of T/F genomes and their evolved progeny is a powerful approach for assessing the impact of composite mutational events on viral fitness.
    Retrovirology 10/2012; 9(1):89. · 5.66 Impact Factor
  • Studies in Surface Science and Catalysis - STUD SURF SCI CATAL. 01/1997; 105:1867-1874.

Full-text (2 Sources)

Download
16 Downloads
Available from
May 20, 2014