Spherical demons: fast diffeomorphic landmark-free surface registration.

Computer Science and Artificial Intelligence Laboratory, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
IEEE Trans Med Imaging 09/2009; 29:650-668. DOI: 10.1109/TMI.2009.2030797
Source: DBLP

ABSTRACT We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160 k nodes requires less than 5 min when warping the atlas and less than 3 min when warping the subject on a Xeon 3.2 GHz single processor machine. This is comparable to the fastest nondiffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image 1) parcellation of in vivo cortical surfaces and 2) Brodmann area localization in ex vivo cortical surfaces.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Blindness represents a unique model to study how visual experience may shape the development of brain organization. Exploring how the structure of the corpus callosum (CC) reorganizes ensuing visual deprivation is of particular interest due to its important functional implication in vision (e.g., via the splenium of the CC). Moreover, comparing early versus late visually deprived individuals has the potential to unravel the existence of a sensitive period for reshaping the CC structure. Here, we develop a novel framework to capture a complete set of shape differences in the CC between congenitally blind (CB), late blind (LB) and sighted control (SC) groups. The CCs were manually segmented from T1-weighted brain MRI and modeled by 3D tetrahedral meshes. We statistically compared the combination of local area and thickness at each point between subject groups. Differences in area are found using surface tensor-based morphometry; thickness is estimated by tracing the streamlines in the volumetric harmonic field. Group differences were assessed on this combined measure using Hotelling’s T 2 test. Interestingly, we observed that the total callosal volume did not differ between the groups. However, our fine-grained analysis reveals significant differences mostly localized around the splenium areas between both blind groups and the sighted group (general effects of blindness) and, importantly, specific dissimilarities between the LB and CB groups, illustrating the existence of a sensitive period for reorganization. The new multivariate statistics also gave better effect sizes for detecting morphometric differences, relative to other statistics. They may boost statistical power for CC morphometric analyses.
    Neuroinformatics 02/2015; DOI:10.1007/s12021-014-9259-9 · 3.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The position of cortical areas can be approximately predicted from cortical surface folding patterns. However, there is extensive inter-subject variability in cortical folding patterns, prohibiting a one-to-one mapping of cortical folds in certain areas. In addition, the relationship between cortical area boundaries and the shape of the cortex is variable, and weaker for higher-order cortical areas. Current surface registration techniques align cortical folding patterns using sulcal landmarks or cortical curvature, for instance. The alignment of cortical areas by these techniques is thus inherently limited by the sole use of geometric similarity metrics. Magnetic resonance imaging T1 maps show intra-cortical contrast that reflects myelin content, and thus can be used to improve the alignment of cortical areas. In this article, we present a new symmetric diffeomorphic multi-contrast multi-scale surface registration (MMSR) technique that works with partially inflated surfaces in the level-set framework. MMSR generates a more precise alignment of cortical surface curvature in comparison to two widely recognized surface registration algorithms. The resulting overlap in gyri labels is comparable to FreeSurfer. Most importantly, MMSR improves the alignment of cortical areas further by including T1 maps. As a first application, we present a group average T1 map at a uniquely high-resolution and multiple cortical depths, which reflects the myeloarchitecture of the cortex. MMSR can also be applied to other MR contrasts, such as functional and connectivity data. Copyright © 2015. Published by Elsevier Inc.
    NeuroImage 02/2015; 11. DOI:10.1016/j.neuroimage.2015.02.005 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biomedical imaging is an important and exponentially growing field in life sciences and clinical practice, which strongly depends on the advances in mathematical image processing. Biomedical data presents a number of particularities such as non-standard acquisition techniques. Thus, biomedical imaging may be considered as an own field of research. Typical biomedical imaging tasks, as outlined in this paper, demand for innovative data models and efficient and robust approaches to produce solutions to challenging problems both in basic research as well as daily clinical routine.This paper discusses typical specifications and challenges of reconstruction and denoising, segmentation, and image registration of biomedical data. Furthermore, it provides an overview of current concepts to tackle the typically ill-posed problems and presents a unified framework that captures the different tasks mathematically. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
    GAMM-Mitteilungen 11/2014; 37(2). DOI:10.1002/gamm.201410008

Full-text (2 Sources)

Available from
Jul 4, 2014