Transport through side-coupled double quantum dots: From weak to strong interdot coupling

Physical review. B, Condensed matter (Impact Factor: 3.66). 02/2012; 85(19). DOI: 10.1103/PhysRevB.85.195117
Source: arXiv


We report low-temperature transport measurements through a double quantum dot
device in a configuration where one of the quantum dots is coupled directly to
the source and drain electrodes, and a second (side-coupled) quantum dot
interacts electrostatically and via tunneling to the first one. As the interdot
coupling increases, a crossover from weak to strong interdot tunneling is
observed in the charge stability diagrams that present a complex pattern with
mergings and apparent crossings of Coulomb blockade peaks. While the weak
coupling regime can be understood by considering a single level on each dot, in
the intermediate and strong coupling regimes, the multi-level nature of the
quantum dots needs to be taken into account. Surprisingly, both in the strong
and weak coupling regimes, the double quantum dot states are mainly localized
on each dot for most values of the parameters. Only in an intermediate coupling
regime the device presents a single dot-like molecular behavior as the
molecular wavefunctions weight is evenly distributed between the quantum dots.
At temperatures larger than the interdot coupling energy scale, a loss of
coherence of the molecular states is observed.

Download full-text


Available from: C. Bäuerle, Oct 08, 2015
25 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyze the transport properties of a double quantum dot device in the side-coupled configuration. A small quantum dot (QD), having a single relevant electronic level, is coupled to source and drain electrodes. A larger QD, whose multilevel nature is considered, is tunnel-coupled to the small QD. A Fermi liquid analysis shows that the low temperature conductance of the device is determined by the total electronic occupation of the double QD. When the small dot is in the Kondo regime, an even number of electrons in the large dot leads to a conductance that reaches the unitary limit, while for an odd number of electrons a two stage Kondo effect is observed and the conductance is strongly suppressed. The Kondo temperature of the second stage Kondo effect is strongly affected by the multilevel structure of the large QD. For increasing level spacing, a crossover from a large Kondo temperature regime to a small Kondo temperature regime is obtained when the level spacing becomes of the order of the large Kondo temperature.
    Physical Review B 01/2014; 89(11). DOI:10.1103/PhysRevB.89.115110 · 3.74 Impact Factor