High-resolution X-ray spectroscopy reveals the special nature of Wolf-Rayet star winds

The Astrophysical Journal Letters (Impact Factor: 6.35). 02/2012; 747(2). DOI: 10.1088/2041-8205/747/2/L25
Source: arXiv

ABSTRACT We present the first high-resolution X-ray spectrum of a putatively single
Wolf-Rayet star. 400 ks observations of WR 6 by the XMM-Newton-telescope
resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis
reveals that the X-rays originate far out in the stellar wind, more than 30
stellar radii from the photosphere, and thus outside the wind acceleration zone
where the line-driving instability could create shocks. The X-ray emitting
plasma reaches temperatures up to 50\,MK, and is embedded within the
un-shocked, "cool" stellar wind as revealed by characteristic spectral
signatures. We detect a fluorescent Fe line at approx 6.4 keV. The presence of
fluorescence is consistent with a two-component medium, where the cool wind is
permeated with the hot X-ray emitting plasma. The wind must have a very porous
structure to allow the observed amount of X-rays to escape. We find that
neither the line-driving instability nor any alternative binary scenario can
explain the data. We suggest a scenario where X-rays are produced when the fast
wind rams into slow "sticky clumps" that resist acceleration. Our new data show
that the X-rays in single WR-star are generated by some special mechanism
different from the one operating in the O-star winds.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Inhomogeneities in a synchrotron source can severely affect the conclusions drawn from observations regarding the source properties. However, their presence is not always easy to establish, since several other effects can give rise to similar observed characteristics. It is argued that the recently observed broadening of the radio spectra and/or light curves in some Type Ib/c supernovae is a direct indication of inhomogeneities. As compared to a homogeneous source, this increases the deduced velocity of the forward shock and the observed correlation between total energy and shock velocity could in part be due to a varying covering factor. The X-ray emission from at least some Type Ib/c supernovae is unlikely to be synchrotron radiation from an electron distribution accelerated in a nonlinear shock. Instead it is shown that the observed correlation during the first few hundred days between the radio, X-ray, and bolometric luminosities indicates that the X-ray emission is inverse Compton scattering of the photospheric photons. Inhomogeneities are consistent with equipartition between electrons and magnetic fields in the optically thin synchrotron emitting regions.
    The Astrophysical Journal 05/2013; 769(1):65. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Soft X-ray absorption in excess of Galactic is observed in the afterglows of most gamma-ray bursts (GRBs), but the correct solution to its origin has not been arrived at after more than a decade of work, preventing its use as a powerful diagnostic tool. We resolve this long-standing problem and find that He in the GRB's host HII region is responsible for most of the absorption. We show that the X-ray absorbing column density (N_Hx) is correlated with both the neutral gas column density and with the optical afterglow extinction (Av). This correlation explains the connection between dark bursts and bursts with high N_Hx values. From these correlations we exclude an origin of the X-ray absorption which is not related to the host galaxy, i.e. the intergalactic medium or intervening absorbers are not responsible. We find that the correlation with the dust column has a strong redshift evolution, whereas the correlation with the neutral gas does not. From this we conclude that the column density of the X-ray absorption is correlated with the total gas column density in the host galaxy rather than the metal column density, in spite of the fact that X-ray absorption is typically dominated by metals. The strong redshift evolution of N_Hx/Av is thus a reflection of the cosmic metallicity evolution of star-forming galaxies. We conclude that the absorption of X-rays in GRB afterglows is caused by He in the HII region hosting the GRB. While dust is destroyed and metals are stripped of all of their electrons by the GRB to great distances, the abundance of He saturates the He-ionising UV continuum much closer to the GRB, allowing it to remain in the neutral or singly-ionised state. Helium X-ray absorption explains the correlation with total gas, the lack of strong evolution with redshift as well as the absence of dust, metal or hydrogen absorption features in the optical-UV spectra.
    The Astrophysical Journal 12/2012; 768(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. Zeta Pup is the X-ray brightest O-type star of the sky. This object was regularly observed with the RGS instrument aboard XMM-Newton for calibration purposes, leading to an unprecedented set of high-quality spectra. Aims. We have previously reduced and extracted this data set and combined it into the most detailed high-resolution X-ray spectrum of any early-type star so far. Here we present the analysis of this spectrum accounting for the presence of structures in the stellar wind. Methods. For this purpose, we use our new modeling tool that allows fitting the entire spectrum with a multi-temperature plasma. We illustrate the impact of a proper treatment of the radial dependence of the X-ray opacity of the cool wind on the best-fit radial distribution of the temperature of the X-ray plasma. Results. The best fit of the RGS spectrum of Zeta Pup is obtained assuming no porosity. Four plasma components at temperatures between 0.10 and 0.69 keV are needed to adequately represent the observed spectrum. Whilst the hardest emission is concentrated between ~3 and 4 R*, the softer emission starts already at 1.5 R* and extends to the outer regions of the wind. Conclusions. The inferred radial distribution of the plasma temperatures agrees rather well with theoretical expectations. The mass- loss rate and CNO abundances corresponding to our best-fit model also agree quite well with the results of recent studies of Zeta Pup in the UV and optical domain.
    Astronomy and Astrophysics 01/2013; · 5.08 Impact Factor

Full-text (2 Sources)

Available from
May 17, 2014