High-resolution X-ray spectroscopy reveals the special nature of Wolf-Rayet star winds

The Astrophysical Journal Letters (Impact Factor: 5.6). 02/2012; 747(2). DOI: 10.1088/2041-8205/747/2/L25
Source: arXiv

ABSTRACT We present the first high-resolution X-ray spectrum of a putatively single
Wolf-Rayet star. 400 ks observations of WR 6 by the XMM-Newton-telescope
resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis
reveals that the X-rays originate far out in the stellar wind, more than 30
stellar radii from the photosphere, and thus outside the wind acceleration zone
where the line-driving instability could create shocks. The X-ray emitting
plasma reaches temperatures up to 50\,MK, and is embedded within the
un-shocked, "cool" stellar wind as revealed by characteristic spectral
signatures. We detect a fluorescent Fe line at approx 6.4 keV. The presence of
fluorescence is consistent with a two-component medium, where the cool wind is
permeated with the hot X-ray emitting plasma. The wind must have a very porous
structure to allow the observed amount of X-rays to escape. We find that
neither the line-driving instability nor any alternative binary scenario can
explain the data. We suggest a scenario where X-rays are produced when the fast
wind rams into slow "sticky clumps" that resist acceleration. Our new data show
that the X-rays in single WR-star are generated by some special mechanism
different from the one operating in the O-star winds.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The evolution of close binary systems containing Wolf-Rayet (WR) stars and black holes (BHs) is analyzed numerically. Both the stellar wind from the donor star itself and the induced stellar wind due to irradiation of the donor with hard radiation arising during accretion onto the relativistic component are considered. The mass and angular momentum losses due to the stellar wind are also taken into account at phases when the WR star fills its Roche lobe. It is shown that, if a WR star with a mass higher than ˜10 M ⊙ fills its Roche lobe in an initial evolutionary phase, the donor star will eventually lose contact with the Roche lobe as the binary loses mass and angular momentum via the stellar wind, suggesting that the semi-detached binary will become detached. The star will remain a bright X-ray source, since the stellar wind that is captured by the black hole ensures a near-Eddington accretion rate. If the initial mass of the helium donor is below ˜5 M ⊙, the donor may only temporarily detach from its Roche lobe. Induced stellar wind plays a significant role in the evolution of binaries containing helium donors with initial masses of ˜2 M ⊙. We compute the evolution of three observed WR-BH binaries: Cyg X-3, IC 10 X-1, and NGC 300 X-1, as well as the evolution of the SS 433 binary system, which is a progenitor of such systems, under the assumption that this binary will avoid a common-envelope stage in its further evolution, as it does in its current evolutionary phase.
    Astronomy Reports 09/2013; 57(9):657-668. DOI:10.1134/S1063772913090084 · 0.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inhomogeneities in a synchrotron source can severely affect the conclusions drawn from observations regarding the source properties. However, their presence is not always easy to establish, since several other effects can give rise to similar observed characteristics. It is argued that the recently observed broadening of the radio spectra and/or light curves in some Type Ib/c supernovae is a direct indication of inhomogeneities. As compared to a homogeneous source, this increases the deduced velocity of the forward shock and the observed correlation between total energy and shock velocity could in part be due to a varying covering factor. The X-ray emission from at least some Type Ib/c supernovae is unlikely to be synchrotron radiation from an electron distribution accelerated in a nonlinear shock. Instead it is shown that the observed correlation during the first few hundred days between the radio, X-ray, and bolometric luminosities indicates that the X-ray emission is inverse Compton scattering of the photospheric photons. Inhomogeneities are consistent with equipartition between electrons and magnetic fields in the optically thin synchrotron emitting regions.
    The Astrophysical Journal 05/2013; 769(1):65. DOI:10.1088/0004-637X/769/1/65 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims: Following our comprehensive studies of the WR stars in the Milky Way, we now present spectroscopic analyses of almost all known WN stars in the Large Magellanic Cloud (LMC). Methods: For the quantitative analysis of the wind-dominated emission-line spectra we employ the Potsdam Wolf-Rayet (PoWR) model atmosphere code. By fitting synthetic spectra to the observed spectral energy distribution and the available spectra (ultraviolet and optical), we obtain the physical properties of 107 stars. Results: We present the fundamental stellar and wind parameters for an almost complete sample of WN stars in the LMC. Among those stars which are putatively single, two different groups can be clearly distinguished. While 12% of our sample are more luminous than 10^6 Lsun and contain a significant amount of hydrogen, 88% of the WN stars, with little or no hydrogen, populates the luminosity range between log (L/Lsun) = 5.3...5.8. Conclusions: While the few extremely luminous stars (log (L/Lsun) > 6), if indeed single stars, descended directly from the main sequence at very high initial masses, the bulk of WN stars have gone through the red-supergiant phase. According to their luminosities in the range of log (L/Lsun) = 5.3...5.8, these stars originate from initial masses between 20 and 40 Msun. This mass range is similar to the one found in the Galaxy, i.e. the expected metallicity dependence of the evolution is not seen. Current stellar evolution tracks, even when accounting for rotationally induced mixing, still partly fail to reproduce the observed ranges of luminosities and initial masses. Moreover, stellar radii are generally larger, and effective temperatures correspondingly lower, than predicted from stellar evolution models, probably due to subphotospheric "inflation".
    Astronomy and Astrophysics 01/2014; 565. DOI:10.1051/0004-6361/201322696 · 4.48 Impact Factor

Full-text (2 Sources)

Available from
May 17, 2014