Conference Paper

Co-Existence Analysis of LTE Micro Cell and LTE Out-Band Backhaul.

DOI: 10.1109/VETECF.2010.5594545 Conference: Proceedings of the 72nd IEEE Vehicular Technology Conference, VTC Fall 2010, 6-9 September 2010, Ottawa, Canada
Source: DBLP

ABSTRACT In this paper, a stand-alone LTE based out-band backhaul is designed for urban area in NLOS environment, and the interference and compatibility issues relating to co-existence of LTE micro cell and co-located LTE out-band backhaul are investigated by a static system level simulator. Feasibility and recommendation of installing out-band backhaul are analyzed according to the simulation results.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper provides a high-level overview of some technology components currently considered for the evolution of LTE including complete fulfillment of the IMT-advanced requirements. These technology components include extended spectrum flexibility, multi-antenna solutions, coordinated multipoint transmission/reception, and the use of advanced repeaters/relaying. A simple performance assessment is also included, indicating potential for significantly increased performance.
    Proceedings of the 68th IEEE Vehicular Technology Conference, VTC Fall 2008, 21-24 September 2008, Calgary, Alberta, Canada; 01/2008
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, there has been an upsurge of interest in multihop-augmented infrastructure-based networks in both the industry and academia, such as the seed concept in 3GPP, mesh networks in IEEE 802.16, and converge extension of HiperLAN/2 through relays or user-cooperative diversity mesh networks. This article, a synopsis of numerous contributions to the working group 4 of the wireless world research forum and other research work, presents an overview of important topics and applications in the context of relaying. It covers different approaches to exploiting the benefits of multihop communications via relays, such as solutions for radio range extension in mobile and wireless broadband cellular networks (trading range for capacity), and solutions to combat shadowing at high radio frequencies. Furthermore, relaying is presented as a means to reduce infrastructure deployment costs. It is also shown that through the exploitation of spatial diversity, multihop relaying can enhance capacity in cellular networks. We wish to emphasize that while this article focuses on fixed relays, many of the concepts presented can also be applied to systems with moving relays.
    IEEE Communications Magazine 10/2004; · 3.66 Impact Factor