Conference Paper

A new paradigm for low-power, variation-tolerant circuit synthesis using critical path isolation.

DOI: 10.1145/1233501.1233628 Conference: 2006 International Conference on Computer-Aided Design (ICCAD'06), November 5-9, 2006, San Jose, CA, USA
Source: DBLP

ABSTRACT Design considerations for robustness with respect to variations and low power operations typically impose contradictory design requirements. Low power design techniques such as voltage scaling, dual-Vth etc. can have a large negative impact on parametric yield. In this paper, we propose a novel paradigm for low-power variation- tolerant circuit design, which allows aggressive voltage scaling. The principal idea is to (a) isolate and predict the set of possible paths that may become critical under process variations, (b) ensure that they are activated rarely, and (c) avoid possible delay failures in the critical paths by dynamically switching to two-cycle operation (assuming all standard operations are single cycle), when they are activated. This allows us to operate the circuit at reduced supply voltage while achieving the required yield. Simulation results on a set of benchmark circuits at 70nm process technology show average power reduction of 60% with less than 10% performance overhead and 18% overhead in die-area compared to conventional synthesis. Application of the proposed methodology to pipelined design is also investigated.

  • Source
    IEEE Transactions on Circuits and Systems for Video Technology 06/2013; · 2.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Instance and temperature-dependent power variation has a direct impact on quality of sensing for battery-powered long-running sensing applications. We measure and characterize the active and leakage power for an ARM Cortex M3 processor and show that, across a temperature range of 20 -60, there is a 10% variation in active power, and a variation in leakage power. We introduce variability-aware duty cycling methods and a duty cycle (DC) abstraction for TinyOS which allows applications to explicitly specify the lifetime and minimum DC requirements for individual tasks, and dynamically adjusts the DC rates so that the overall quality of service is maximized in the presence of power variability. We show that variability-aware duty cycling yields a improvement in total active time over schedules based on worst case estimations of power, with an average improvement of across a wide variety of deployment scenarios based on the collected temperature traces. Conversely, datasheet power specifications fail to meet required lifetimes by 7%-15%, with an average 37 days short of the required lifetime of 1 year. Finally, we show that a target localization application using variability-aware DC yields a 50% improvement in quality of results over one based on worst case estimations of power consumption.
    IEEE Transactions on Very Large Scale Integration (VLSI) Systems 06/2013; 21(6):1000-1012. · 1.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As CMOS technology driven by Moore's law has approached device sizes in the range of 5-20 nm, noise immunity of such future technology nodes is predicted to decrease considerably, eventually affecting the reliability of computations through them. A shift in the design paradigm is expected from 100% accurate computations to probabilistic computing with accuracy dependent on the target application or circuit specifications. One model developed for CMOS technology that emulates the erroneous behavior predicted is termed probabilistic CMOS (PCMOS). In this paper, we propose a PCMOS-based architecture implementation for traditional motion estimation algorithms and show that up to 57% energy savings are possible for different existing motion estimation algorithms. Furthermore, algorithmic modifications are proposed that can enhance the energy savings to 70% with a PCMOS architectural implementation. About 1.8-5 dB improvement in peak signal-to-noise ratio under energy savings of 57% to 70% for two different motion estimation algorithms is shown, establishing the resilience of the proposed algorithm to probabilistic computing over the comparable conventional algorithm.
    IEEE Transactions on Circuits and Systems for Video Technology 01/2014; 24(1):1-14. · 2.26 Impact Factor


Available from