Conference Paper

Learning Non-Linear Combinations of Kernels.

Conference: Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada.
Source: DBLP

ABSTRACT This paper studies the general problem of learning kernels based on a polynomial combination of base kernels. We analyze this problem in the case of regression and the kernel ridge regression algorithm. We examine the corresponding learning kernel optimization problem, show how that minimax problem can be reduced to a simpler minimization problem, and prove that the global solution of this problem always lies on the boundary. We give a projection-based gradient descent algo- rithm for solving the optimization problem, shown empirically to converge in few iterations. Finally, we report the results of extensive exp eriments with this algo- rithm using several publicly available datasets demonstrating the effectiveness of our technique.

0 Bookmarks
 · 
223 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A traditional and intuitively appealing Multi-Task Multiple Kernel Learning (MT-MKL) method is to optimize the sum (thus, the average) of objective functions with (partially) shared kernel function, which allows information sharing amongst tasks. We point out that the obtained solution corresponds to a single point on the Pareto Front (PF) of a Multi-Objective Optimization (MOO) problem, which considers the concurrent optimization of all task objectives involved in the Multi-Task Learning (MTL) problem. Motivated by this last observation and arguing that the former approach is heuristic, we propose a novel Support Vector Machine (SVM) MT-MKL framework, that considers an implicitly-defined set of conic combinations of task objectives. We show that solving our framework produces solutions along a path on the aforementioned PF and that it subsumes the optimization of the average of objective functions as a special case. Using algorithms we derived, we demonstrate through a series of experimental results that the framework is capable of achieving better classification performance, when compared to other similar MTL approaches.
    IEEE transactions on neural networks and learning systems 04/2014; · 4.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Affective classification and retrieval of multimedia such as audio, image, and video have become emerging research areas in recent years. The previous research focused on designing features and developing feature extraction methods. Generally, a multimedia content can be represented with different feature representations (i.e., views). However, the most suitable feature representation related to people's emotions is usually not known a priori. We propose here a novel Bayesian multiple kernel learning algorithm for affective classification and retrieval tasks. The proposed method can make use of different representations simultaneously (i.e., multiview learning) to obtain a better prediction performance than using a single feature representation (i.e., single-view learning) or a subset of features, with the advantage of automatic feature selections. In particular, our algorithm has been implemented within a multilabel setup to capture the correlation between emotions, and the Bayesian formulation enables our method to produce probabilistic outputs for measuring a set of emotions triggered by a single image. As a case study, we perform classification and retrieval experiments with our algorithm for predicting people's emotional states evoked by images, using generic low-level image features. The empirical results with our approach on the widely-used International Affective Picture System (IAPS) data set outperforms several existing methods in terms of classification performance and results interpretability.
    Neurocomputing. Accepted, to appear. 12/2014;

Full-text

Download
0 Downloads
Available from