Conference Paper

Indian Buffet Processes with Power-law Behavior.

Conference: Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada.
Source: DBLP

ABSTRACT The Indian buffet process (IBP) is an exchangeable distribution over binary ma- trices used in Bayesian nonparametric featural models. In this paper we propose a three-parameter generalization of the IBP exhibiting power-law behavior. We achieve this by generalizing the beta process (the de Finetti measure of the IBP) to the stable-beta process and deriving the IBP corresponding to it. We find interest- ing relationships between the stable-beta process and the Pitman-Yor process (an- other stochastic process used in Bayesian nonparametric models with interesting power-law properties). We derive a stick-breaking construction for the stable-beta process, and find that our power-law IBP is a good model for word occurrences in document corpora.

0 Bookmarks
 · 
109 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sampling, coding, and streaming even the most essential data, e.g., in medical imaging and weather-monitoring applications, produce a data deluge that severely stresses the avail able analog-to-digital converter, communication bandwidth, and digital-storage resources. Surprisingly, while the ambient data dimension is large in many problems, the relevant information in the data can reside in a much lower dimensional space. This observation has led to several important theoretical and algorithmic developments under different low-dimensional modeling frameworks, such as compressive sensing (CS), matrix completion, and general factor-model representations. These approaches have enabled new measurement systems, tools, and methods for information extraction from dimensionality-reduced or incomplete data. A key aspect of maximizing the potential of such techniques is to develop appropriate data models. In this article, we investigate this challenge from the perspective of nonparametric Bayesian analysis.
    IEEE Signal Processing Magazine 03/2011; 28(2). · 3.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Modelling is fundamental to many fields of science and engineering. A model can be thought of as a representation of possible data one could predict from a system. The probabilistic approach to modelling uses probability theory to express all aspects of uncertainty in the model. The probabilistic approach is synonymous with Bayesian modelling, which simply uses the rules of probability theory in order to make predictions, compare alternative models, and learn model parameters and structure from data. This simple and elegant framework is most powerful when coupled with flexible probabilistic models. Flexibility is achieved through the use of Bayesian non-parametrics. This article provides an overview of probabilistic modelling and an accessible survey of some of the main tools in Bayesian non-parametrics. The survey covers the use of Bayesian non-parametrics for modelling unknown functions, density estimation, clustering, time-series modelling, and representing sparsity, hierarchies, and covariance structure. More specifically, it gives brief non-technical overviews of Gaussian processes, Dirichlet processes, infinite hidden Markov models, Indian buffet processes, Kingman's coalescent, Dirichlet diffusion trees and Wishart processes.
    Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences 01/2013; 371(1984):20110553. · 2.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The three-parameter Indian buffet process is generalized. The possibly different role played by customers is taken into account by suitable (random) weights. Various limit theorems are also proved for such generalized Indian buffet process. Let L_n be the number of dishes experimented by the first n customers, and let {\bar K}_n = (1/n)\sum_{i=1}^n K_i where K_i is the number of dishes tried by customer i. The asymptotic distributions of L_n and {\bar K}_n, suitably centered and scaled, are obtained. The convergence turns out to be stable (and not only in distribution). As a particular case, the results apply to the standard (i.e., not generalized) Indian buffet process.
    04/2013;

Full-text

Download
0 Downloads
Available from