Conference Paper

# Some Sieving Algorithms for Lattice Problems.

DOI: 10.4230/LIPIcs.FSTTCS.2008.1738 In proceeding of: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2008, December 9-11, 2008, Bangalore, India

Source: OAI

- [Show abstract] [Hide abstract]

**ABSTRACT:**We give a deterministic O(log n)^n algorithm for the {\em Shortest Vector Problem (SVP)} of a lattice under {\em any} norm, improving on the previous best deterministic bound of n^O(n) for general norms and nearly matching the bound of 2^O(n) for the standard Euclidean norm established by Micciancio and Voulgaris (STOC 2010). Our algorithm can be viewed as a derandomization of the AKS randomized sieve algorithm, which can be used to solve SVP for any norm in 2^O(n) time with high probability. We use the technique of covering a convex body by ellipsoids, as introduced for lattice problems in (Dadush et al., FOCS 2011). Our main contribution is a deterministic approximation of an M-ellipsoid of any convex body. We achieve this via a convex programming formulation of the optimal ellipsoid with the objective function being an n-dimensional integral that we show can be approximated deterministically, a technique that appears to be of independent interest.07/2011; -
##### Conference Paper: Deterministic construction of an approximate M-ellipsoid and its applications to derandomizing lattice algorithms.

[Show abstract] [Hide abstract]

**ABSTRACT:**We give a deterministic O(logn)n-time and space algorithm for the Shortest Vector Problem (SVP) of a lattice under any norm, improving on the previous best deterministic nO(n)-time algorithms for general norms. This approaches the 2O(n)-time and space complexity of the randomized sieve based SVP algorithms (Arvind and Joglekar, FSTTCS 2008), first introduced by Ajtai, Kumar and Sivakumar (STOC 2001) for l2-SVP, and the M-ellipsoid covering based SVP algorithm of Dadush et al. (FOCS 2011). Here we continue with the covering approach of Dadush et al., and our main technical contribution is a deterministic approximation of an M-ellipsoid for any convex body. To achieve this we exchange the M-position of a convex body by a related position, known as the minimal mean width position of the polar body. We reduce the task of computing this position to solving a semi-definite program whose objective is a certain Gaussian expectation, which we show can be approximated deterministically.Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011; 01/2012 - [Show abstract] [Hide abstract]

**ABSTRACT:**We give a deterministic 2(o(n))algorithm for computing an M-ellipsoid of a convex body, matching a known lower bound. This leads to a nearly optimal deterministic algorithm for estimating the volume of a convex body and improved deterministic algorithms for fundamental lattice problems under general norms.Proceedings of the National Academy of Sciences 09/2013; · 9.74 Impact Factor

Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.