Article

Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop.

Oncogene (Impact Factor: 8.56). 02/2012; doi: 10.1038/onc.2012.28. [Epub ahead of print].

ABSTRACT Dysregulated microRNAs (miRNAs) have an important role in many malignant tumors. However, elucidating the roles of miRNAs in cancer biology, especially in epithelial cancers, remains an ongoing process. In this study, we show that both miR-143 and miR-145, which belong to the same miRNA cluster, can negatively modulate expression of their target gene, MDM2. The miR-143 and miR-145 is posttranscriptionally activated by upregulated p53, thereby generating a short miRNAs-MDM2-p53 feedback loop. Re-expression of these miRNAs suppresses cellular growth and triggers the apoptosis of epithelial cancer, in vitro and in vivo, by enhancing p53 activity via MDM2 turnover. Moreover, the miRNA-dependent MDM2 turnover contributes to the equilibrium of repeated p53 pulses in response to DNA damage stress. These findings suggest that MDM2 dysregulation caused by downregulation of miR-143 and miR-145 contributes to epithelial cancer development and has a key role in regulating cellular proliferation and apoptosis. Re-expression of miR-143 and miR-145 may be a reasonable strategy for treatment of epithelial cancers.Oncogene advance online publication, 13 February 2012; doi:10.1038/onc.2012.28.

2 Bookmarks
 · 
149 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major challenge to the clinical utility of let-7 for hepatocellular carcinoma (HCC) therapy is the lack of an effective carrier to target tumours. We confirmed the high transfection efficiency of cholesterol-conjugated let-7a miRNA mimics (Chol-let-7a) in human HCC cells, as well as their high affinity for liver tissue in nude mice. However, their antitumor efficacy via systemic delivery remains unknown. We explored the effects of Chol-let-7a on HCC in vitro and in vivo. Cell viability and mobility, let-7a abundance and the target ras genes was measured. Live-cell image and cell ultrastructure was observed. Antitumor efficacy in vivo was analyzed by ultrasonography, hispatholgogy and transmission electronic microscopy in a preclinical model of HCC orthotopic xenografts with systemic therapy. Chol-let-7a inhibited the viability and mobility of HCC cells. Chol-let-7a was primarily observed in the cytoplasm and induced organelle changes, including autophagy. Mild changes were observed in the cells treated with negative control miRNA. Chol-let-7a reached HCC orthotopic tumours, significantly inhibited tumour growth, and prevented local invasion and metastasis. Compared to control tumours, Chol-let-7a-treated tumours showed more necrosis. Tumour cells showed no significant atypia, and mitoses were very rare after systemic Chol-let-7a therapy. Furthermore, let-7a abundance in orthotopic xenografts was coincident with a reduction in the expression of 3 human ras mRNAs and RAS proteins. Chol-let-7a exerted significant antitumor effects by down-regulating all human ras genes at the transcriptional and translational levels. Chol-let-7a inhibited cell proliferation, growth, and metastasis, and mainly functioned in the cytoplasm. Chol-let-7a represents a potential useful modified molecule for systemic HCC therapy.
    BMC Cancer 11/2014; 14(1):889. DOI:10.1186/1471-2407-14-889 · 3.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Accelerated cell cycle progression is the common feature of most cancers. MiRNAs can act as oncogenes or tumor suppressors by directly modulating cell cycle machinery. It has been shown that miR-188 is upregulated in UVB-irradiated mouse skin and human nasopharyngeal carcinoma CNE cells under hypoxic stress. However, little is known about the function of miR-188 in cell proliferation and growth control.ResultsOverexpression of miR-188 inhibits cell proliferation, tumor colony formation and G1/S cell cycle transition in human nasopharyngeal carcinoma CNE cells. Using bioinformatics approach, we identify a series of genes regulating G1/S transition as putative miR-188 targets. MiR-188 inhibits both mRNA and protein expression of CCND1, CCND3, CCNE1, CCNA2, CDK4 and CDK2, suppresses Rb phosphorylation and downregulates E2F target genes. The expression level of miR-188 also inversely correlates with the expression of miR-188 targets in human nasopharyngeal carcinoma (NPC) tissues. Moreover, studies in xenograft mouse model reveal that miR-188 is capable of inhibiting tumor initiation and progression by suppressing target genes expression and Rb phosphorylation.Conclusions This study demonstrates that miR-188 exerts anticancer effects, via downregulation of multiple G1/S related cyclin/CDKs and Rb/E2F signaling pathway.
    Cell Communication and Signaling 10/2014; 12(1):66. DOI:10.1186/PREACCEPT-1482274339133333 · 4.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer represents the leading cause of cancer-related death in developed countries. Despite the advances in diagnostic and therapeutic techniques, the 5-year survival rate remains low. The research for novel therapies directed to biological targets has modified the therapeutic approach, but the frequent engagement of resistance mechanisms and the substantial costs, limit the ability to reduce lung cancer mortality. MicroRNAs (miRNAs) are small noncoding RNAs with known regulatory functions in cancer initiation and progression. In this study we found that mir-660 expression is downregulated in lung tumors compared with adjacent normal tissues and in plasma samples of lung cancer patients with poor prognosis, suggesting a potential functional role of this miRNA in lung tumorigenesis. Transient and stable overexpression of mir-660 using miRNA mimics reduced migration, invasion, and proliferation properties and increased apoptosis in p53 wild-type lung cancer cells (NCI-H460, LT73, and A549). Furthermore, stable overexpression using lentiviral vectors in NCI-H460 and A549 cells inhibited tumor xenograft growth in immunodeficient mice (95 and 50% reduction compared with control, respectively), whereas the effects of mir-660 overexpression were absent in H1299, a lung cancer cell line lacking p53 locus, both in in vitro and in vivo assays. We identified and validated mouse double minute 2 (MDM2) gene, a key regulator of the expression and function of p53, as a new direct target of mir-660. In addition, mir-660 expression reduced both mRNA and protein expression of MDM2 in all cell lines and stabilized p53 protein levels resulting in an upregulation of p21(WAF1/CIP1) in p53 wild-type cells. Our finding supports that mir-660 acts as a tumor suppressor miRNA and we suggest the replacement of mir-660 as a new therapeutic approach for p53 wild-type lung cancer treatment.
    Cell Death & Disease 01/2014; 5:e1564. DOI:10.1038/cddis.2014.507 · 5.18 Impact Factor

Full-text

Download
176 Downloads
Available from
May 28, 2014