Conference Paper

SNUPI: sensor nodes utilizing powerline infrastructure.

DOI: 10.1145/1864349.1864377 In proceeding of: UbiComp 2010: Ubiquitous Computing, 12th International Conference, UbiComp 2010, Copenhagen, Denmark, September 26-29, 2010, Proceedings
Source: DBLP

ABSTRACT A persistent concern of wireless sensors is the power consumption required for communication, which presents a significant adoption hurdle for practical ubiquitous computing applications. This work explores the use of the home powerline as a large distributed antenna capable of receiving signals from ultra-low-power wireless sensor nodes and thus allowing nodes to be detected at ranges that are otherwise impractical with traditional over-the-air reception. We present the design and implementation of small ultra-low-power 27 MHz sensor nodes that transmit their data by coupling over the powerline to a single receiver attached to the powerline in the home. We demonstrate the ability of our general purpose wireless sensor nodes to provide whole-home coverage while consuming less than 1 mW of power when transmitting (65 ¼W consumed in our custom CMOS transmitter). This is the lowest power transmitter to date compared to those found in traditional whole-home wireless systems.

0 Bookmarks
 · 
80 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Commercial buildings are attractive targets for introducing innovative cyber-physical control systems, because they are already highly instrumented distributed systems which consume large quantities of energy. However, they are not currently programmable in a meaningful sense because each building is constructed with vertically integrated, closed subsystems and without uniform abstractions to write applications against. We develop a set of operating system services called BOSS, which supports multiple portable, fault-tolerant applications on top of the distributed physical resources present in large commercial buildings. We evaluate our system based on lessons learned from deployments of many novel applications in our test building, a four-year-old, 140,000sf building with modern digital controls, as well as partial deployments at other sites.
    Proceedings of the 10th USENIX conference on Networked Systems Design and Implementation; 04/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Providing effective feedback on resource consumption in the home is a key challenge of environmental conservation efforts. One promising approach for providing feedback about residential energy consumption is the use of ambient and artistic visualizations. Pervasive computing technologies enable the integration of such feedback into the home in the form of distributed point-of-consumption feedback devices to support decision-making in everyday activities. However, introducing these devices into the home requires sensitivity to the domestic context. In this paper we describe three abstract visualizations and suggest four design requirements that this type of device must meet to be effective: pragmatic, aesthetic, ambient, and ecological. We report on the findings from a mixed methods user study that explores the viability of using ambient and artistic feedback in the home based on these requirements. Our findings suggest that this approach is a viable way to provide resource use feedback and that both the aesthetics of the representation and the context of use are important elements that must be considered in this design space.
    IEEE transactions on visualization and computer graphics. 12/2011; 17(12):2489-97.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We propose a novel search technique called IteMinder that helps users find property in a room using passive RFID and an autonomous robot. First, we attach RFID tags to the target items and at typical locations in a room. We also attach an RFID reader and a laser rangefinder to the robot. The robot can move around the entire room automatically while avoiding obstacles using the laser rangefinder. When the robot finds a tagged item, it uploads the tag ID and location information to the database. Users can then browse target items and their locations on a common web browser.
    UbiComp 2011: Ubiquitous Computing, 13th International Conference, UbiComp 2011, Beijing, China, September 17-21, 2011, Proceedings; 01/2011

Full-text (2 Sources)

View
6 Downloads
Available from
Jun 10, 2014