Conference Paper

Route classification using cellular handoff patterns.

DOI: 10.1145/2030112.2030130 Conference: UbiComp 2011: Ubiquitous Computing, 13th International Conference, UbiComp 2011, Beijing, China, September 17-21, 2011, Proceedings
Source: DBLP

ABSTRACT Understanding utilization of city roads is important for urban planners. In this paper, we show how to use handoff patterns from cellular phone networks to identify which routes people take through a city. Specifically, this paper makes three contributions. First, we show that cellular handoff patterns on a given route are stable across a range of conditions and propose a way to measure stability within and between routes using a variant of Earth Mover's Distance. Second, we present two accurate classification algorithms for matching cellular handoff patterns to routes: one requires test drives on the routes while the other uses signal strength data collected by high-resolution scanners. Finally, we present an application of our algorithms for measuring relative volumes of traffic on routes leading into and out of a specific city, and validate our methods using statistics published by a state transportation authority.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Location and mobility patterns of individuals are important to environmental planning, societal resilience, public health, and a host of commercial applications. Mining telecommunication traffic and transactions data for such purposes is controversial, in particular raising issues of privacy. However, our hypothesis is that privacy-sensitive uses are possible and often beneficial enough to warrant considerable research and development efforts. Our work contends that peoples’ behavior can yield patterns of both significant commercial, and research, value. For such purposes, methods and algorithms for mining telecommunication data to extract commonly used routes and locations, articulated through time-geographical constructs, are described in a case study within the area of transportation planning and analysis. From the outset, these were designed to balance the privacy of subscribers and the added value of mobility patterns derived from their mobile communication traffic and transactions data. Our work directly contrasts the current, commonly held notion that value can only be added to services by directly monitoring the behavior of individuals, such as in current attempts at location-based services. We position our work within relevant legal frameworks for privacy and data protection, and show that our methods comply with such requirements and also follow best-practices.
    Network and Communication Technologies. 04/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this research, we propose a methodology to develop OD matrices using mobile phone Call Detail Records (CDR) and limited traffic counts. CDR, which consist of time stamped tower locations with caller IDs, are analyzed first and trips occurring within certain time windows are used to generate tower-to-tower transient OD matrices for different time periods. These are then associated with corresponding nodes of the traffic network and converted to node-to-node transient OD matrices. The actual OD matrices are derived by scaling up these node-to-node transient OD matrices. An optimization based approach, in conjunction with a microscopic traffic simulation platform, is used to determine the scaling factors that result best matches with the observed traffic counts. The methodology is demonstrated using CDR from 2.87 million users of Dhaka, Bangladesh over a month and traffic counts from 13 key locations over 3 days of that month. The applicability of the methodology is supported by a validation study.
    Transportation Research Part C Emerging Technologies 01/2014; 40:63–74. · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The methods currently used for primary road traffic data collection have prohibitive costs which compromise coverage of the entire transportation network in a city. Failure to collect information from the road traffic stream leads traffic management authorities to rely on an incomplete picture of the traffic status. This study explores a complementary method to gauge the status of road traffic conditions through the use of cellular networks handover count. To test this method, hourly handover counts were obtained in Lisbon, Portugal, from 39 cellular towers in the vicinity of arterial roads that have 12 traffic counters with an average daily traffic size of 20,500 vehicles. An initial correlation analysis proved the existence of a good relationship between handover and traffic volumes. However, the number of vehicles to handovers ratio at different sites can change up to 10 folds, which has limited the expansion of our model to estimate the absolute traffic volumes based on handover counts. Hence we have classified the hourly traffic counts into three categories: high, medium, and low traffic levels using the 50th and 80th percentiles. Then, half of the data was used to build a multinomial logit (MNL) model and to train an artificial neural network (ANN) in order to relate traffic and handover. The other half of the data was used to validate both models. The MNL and ANN models gave an overall correct classification accuracy of 76.4% and 78.1% respectively. Both models outperformed the accuracy of 70.8% obtained from a City-wide time-of-day traffic profile. The results demonstrate the feasibility of handover based models providing better accuracy in capturing site-specific traffic profile compared with the typical City-wide time-of-day traffic profile. It can be concluded that this study encourages the exploration of the use of cellphone handover information in estimating the road traffic status.
    Transportation Research Part C Emerging Technologies 07/2013; 32:76-78. · 2.01 Impact Factor

Full-text (2 Sources)

Available from
Jul 17, 2014