Conference Paper

Triangle Contact Representations and Duality.

DOI: 10.1007/978-3-642-18469-7_24 Conference: Graph Drawing - 18th International Symposium, GD 2010, Konstanz, Germany, September 21-24, 2010. Revised Selected Papers
Source: DBLP

ABSTRACT A contact representation by triangles of a graph is a set of triangles in the plane such that two triangles intersect on at most one point, each triangle represents a vertex of the graph and two triangles intersects if and only if their corresponding vertices are adjacent. de Fraysseix, Ossona de Mendez and Rosenstiehl proved that every planar graph admits a contact representation by triangles. We strengthen this in terms of a simultaneous contact representation by triangles of a planar map and of its dual. A primal-dual contact representation by triangles of a planar map is a contact representa- tion by triangles of the primal and a contact representation by triangles of the dual such that for every edge uv, bordering faces f and g, the intersection between the triangles corresponding to u and v is the same point as the intersection between the triangles cor- responding to f and g. We prove that every 3-connected planar map admits a primal-dual contact representation by triangles. Moreover, the interiors of the triangles form a tiling of the triangle corresponding to the outer face and each contact point is a node of exactly three triangles. Then we show that these representations are in one-to-one correspondence with generalized Schnyder woods defined by Felsner for 3-connected planar maps.

0 Bookmarks
 · 
85 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study contact representations for planar graphs, with vertices represented by simple polygons and adjacencies represented by point-contacts or side-contacts between the corresponding polygons. Specifically, we consider proportional contact representations, where pre-specified vertex weights must be represented by the areas of the corresponding polygons. Several natural optimization goals for such representations include minimizing the complexity of the polygons, the cartographic error, and the unused area. We describe constructive algorithms for proportional contact representations with optimal complexity for general planar graphs and planar 2-segment graphs, which include maximal outerplanar graphs and partial 2-trees.
    Graph Drawing - 19th International Symposium, GD 2011, Eindhoven, The Netherlands, September 21-23, 2011, Revised Selected Papers; 01/2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we consider the problem of representing graphs by polygons whose sides touch. We show that at least six sides per polygon are necessary by constructing a class of planar graphs that cannot be represented by pentagons. We also show that the lower bound of six sides is matched by an upper bound of six sides with a linear-time algorithm for representing any planar graph by touching hexagons. Moreover, our algorithm produces convex polygons with edges having at most three slopes and with all vertices lying on an O(n)xO(n) grid.
    Algorithmica 04/2011; 63(3). · 0.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We consider {\em L-graphs}, that is contact graphs of axis-aligned L-shapes in the plane, all with the same rotation. We provide several characterizations of L-graphs, drawing connections to Schnyder realizers and canonical orders of maximally planar graphs. We show that every contact system of L's can always be converted to an equivalent one with equilateral L's. This can be used to show a stronger version of a result of Thomassen, namely, that every planar graph can be represented as a contact system of square-based cuboids. We also study a slightly more restricted version of equilateral L-contact systems and show that these are equivalent to homothetic triangle contact representations of maximally planar graphs. We believe that this new interpretation of the problem might allow for efficient algorithms to find homothetic triangle contact representations, that do not use Schramm's monster packing theorem.
    03/2013;

Full-text

Download
4 Downloads
Available from