Conference Paper

Effects of learning rate on the performance of the population based incremental learning algorithm.

Dept. of Electr. Eng., Univ. of Cape Town, Rondebosch, South Africa
DOI: 10.1109/IJCNN.2009.5179080 Conference: International Joint Conference on Neural Networks, IJCNN 2009, Atlanta, Georgia, USA, 14-19 June 2009
Source: IEEE Xplore

ABSTRACT The effect of learning rate (LR) on the performance of a newly introduced evolutionary algorithm called population-based incremental learning (PBIL) is investigated in this paper. PBIL is a technique that combines a simple genetic algorithm (GA) with competitive learning (CL). Although CL is often studied in the context of artificial neural networks (ANNs), it plays a vital role in PBIL in that the idea of creating a prototype vector in learning vector quantization (LVQ) is central to PBIL. In PBIL, the crossover operator of GAs is abstracted away and the role of population is redefined. PBIL maintains a real-valued probability vector (PV) or prototype vector from which solutions are generated. The probability vector controls the random bitstrings generated by PBIL and is used to create other individuals through learning. The setting of the learning rate (LR) can greatly affect the performance of PBIL. However, the effect of the learning rate in PBIL is not yet fully understood. In this paper, PBIL is used to design power system stabilizers (PSSs) for a multi-machine power system. Four cases studies with different learning rate patterns are investigated. These include fixed LR; purely adaptive LR; fixed LR followed by adaptive LR; and adaptive LR followed by fixed LR. It is shown that a smaller learning rate leads to more exploration of the algorithm which introduces more diversity in the population at the cost of slower convergence. On the other hand, a higher learning rate means more exploitation of the algorithm and hence, this could lead to a premature convergence in the case of fixed LR. Therefore, in setting the LR, a trade-off is needed between exploitation and exploration.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The application of a multi-population based Population-Based Incremental Learning (PBIL) to power system controller design is presented in this paper. PBIL is a combination of evolutionary optimization and competitive learning derived from artificial neural networks. Single population PBIL has recently received increasing attention in various engineering fields due to its effectiveness., easy implementation and robustness. Despite these strengths., PBIL still suffers from issues of loss of diversity in the population. The use of multi-population is seen as one way of increasing the diversity in the population. The approach is applied to power system controller design. Simulations results show that the multi-population PBIL approach performs better than the standard PBIL and is as effective as PBIL where adaptive learning is used.
    Computational Intelligence Applications In Smart Grid (CIASG), 2013 IEEE Symposium on; 01/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Population-Based Incremental Learning (PBIL) is a relatively new class of Evolutionary Algorithms (EA) that has been recently applied to a range of optimization problems in engineering with promising results. PBIL combines aspects of Genetic Algorithm with competitive learning. The learning rate in the standard PBIL is generally fixed which makes it difficult for the algorithm to explore the search space effectively. In this paper, a PBIL with Adapting learning rate is proposed. The Adaptive PBIL (APBIL) is able to thoroughly explore the search space at the start of the run and maintain the diversity longer than the standard PBIL. To show its effectiveness, the proposed algorithm is applied to the problem of optimizing the parameters of a power system controller. Simulation results show that APBIL based controller performs better than the standard PBIL based controller.
    Proceedings of the Third international conference on Advances in Swarm Intelligence - Volume Part I; 06/2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Population-based incremental learning (PBIL) has been recently applied to a range of optimization problems in controller designs with promising results. It combines aspects of genetic algorithm with competitive learning. The learning rate in the standard PBIL is generally fixed which makes it difficult for the algorithm to explore the search space effectively. In this paper, the standard PBIL is improved by using a combination of adaptive and fixed learning rate that varies according to the generation. The adaptive-fixed (AF) algorithm can adjust the learning rate automatically according to the degree of evolution of the search. The objective of the power system stabilizer (PSS) design is to achieve adequate stability over a wide range of power system operating conditions. The proposed controller is compared with conventional PBIL with fixed learning rate (PBIL) and tested under various operating conditions. Simulation results show that the AFPBIL based PSS provides a more efficient search capability and gives a better damping and adequate dynamic performance of the system than the conventional PBIL based PSS.
    Energy Conversion Congress and Exposition (ECCE), 2012 IEEE; 01/2012