Conference Paper

Multidimensional mining of large-scale search logs: a topic-concept cube approach.

DOI: 10.1145/1935826.1935888 Conference: Proceedings of the Forth International Conference on Web Search and Web Data Mining, WSDM 2011, Hong Kong, China, February 9-12, 2011
Source: DBLP

ABSTRACT In addition to search queries and the corresponding clickthrough information, search engine logs record multidimensional information about user search activities, such as search time, location, vertical, and search device. Multidimensional mining of search logs can provide novel insights and useful knowledge for both search engine users and developers. In this paper, we describe our topic-concept cube project, which addresses the business need of supporting multidimensional mining of search logs effectively and efficiently. We answer two challenges. First, search queries and click-through data are well recognized sparse, and thus have to be aggregated properly for effective analysis. Second, there is often a gap between the topic hierarchies in multidimensional aggregate analysis and queries in search logs. To address those challenges, we develop a novel topic-concept model that learns a hierarchy of concepts and topics automatically from search logs. Enabled by the topicconcept model, we construct a topic-concept cube that supports online multidimensional mining of search log data. A distinct feature of our approach is that, in addition to the standard dimensions such as time and location, our topic-concept cube has a dimension of topics and concepts, which substantially facilitates the analysis of log data. To handle a huge amount of log data, we develop distributed algorithms for learning model parameters efficiently. We also devise approaches to computing a topic-concept cube. We report an empirical study verifying the effectiveness and efficiency of our approach on a real data set of 1.96 billion queries and 2.73 billion clicks.

1 Bookmark
 · 
78 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Capturing the context of a user's query from the previous queries and clicks in the same session may help understand the user's information need. A context-aware approach to document re-ranking, query suggestion, and URL recommendation may improve users' search experience substantially. In this paper, we propose a general approach to context-aware search. To capture contexts of queries, we learn a variable length Hidden Markov Model (vlHMM) from search sessions extracted from log data. Although the mathematical model is intuitive, how to learn a large vlHMM with millions of states from hundreds of millions of search sessions poses a grand challenge. We develop a strategy for parameter initialization in vlHMM learning which can greatly reduce the number of parameters to be estimated in practice. We also devise a method for distributed vlHMM learning under the map-reduce model. We test our approach on a real data set consisting of 1.8 billion queries, 2.6 billion clicks, and 840 million search sessions, and evaluate the effectiveness of the vlHMM learned from the real data on three search applications: document re-ranking, query suggestion, and URL recommendation. The experimental results show that our approach is both effective and efficient.
    01/2009
  • [Show abstract] [Hide abstract]
    ABSTRACT: We review a query log of hundreds of millions of queries that constitute the total query traffic for an entire week of a general-purpose commercial web search service. Previously, query logs have been studied from a single, cumulative view. In contrast, our analysis shows changes in popularity and uniqueness of topically categorized queries across the hours of the day. We examine query traffic on an hourly basis by matching it against lists of queries that have been topically pre-categorized by human editors. This represents 13% of the query traffic. We show that query traffic from particular topical categories differs both from the query stream as a whole and from other categories. This analysis provides valuable insight for improving retrieval effectiveness and efficiency. It is also relevant to the development of enhanced query disambiguation, routing, and caching algorithms.
    01/2004
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Query suggestion plays an important role in improving the usability of search engines. Although some recently proposed methods can make meaningful query suggestions by mining query patterns from search logs, none of them are context-aware - they do not take into account the immediately preceding queries as context in query suggestion. In this paper, we propose a novel context-aware query suggestion approach which is in two steps. In the offine model-learning step , to address data sparseness, queries are summarized into concepts by clustering a click-through bipartite. Then, from session data a concept sequence suffix tree is constructed as the query suggestion model. In the online query suggestion step , a user's search context is captured by mapping the query sequence submitted by the user to a sequence of concepts. By looking up the context in the concept sequence sufix tree, our approach suggests queries to the user in a context-aware manner. We test our approach on a large-scale search log of a commercial search engine containing 1:8 billion search queries, 2:6 billion clicks, and 840 million query sessions. The experimental results clearly show that our approach outperforms two baseline methods in both coverage and quality of suggestions.
    01/2008

Full-text (3 Sources)

View
35 Downloads
Available from
May 30, 2014