Conference Paper

The Development of a Schema for the Annotation of Terms in the Biocaster Disease Detecting/Tracking System.

Conference: KR-MED 2006, Formal Biomedical Knowledge Representation, Proceedings of the Second International Workshop on Formal Biomedical Knowledge Representation: "Biomedical Ontology in Action" (KR-MED 2006), Collocated with the 4th International Conference on Formal Ontology in Information Systems (FOIS-2006), Baltimore, Maryland, USA, November 8, 2006
Source: DBLP
0 Bookmarks
 · 
66 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accurate and timely detection of public health events of international concern is necessary to help support risk assessment and response and save lives. Novel event-based methods that use the World Wide Web as a signal source offer potential to extend health surveillance into areas where traditional indicator networks are lacking. In this paper we address the issue of systematically evaluating online health news to support automatic alerting using daily disease-country counts text mined from real world data using BioCaster. For 18 data sets produced by BioCaster, we compare 5 aberration detection algorithms (EARS C2, C3, W2, F-statistic and EWMA) for performance against expert moderated ProMED-mail postings. We report sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), mean alerts/100 days and F1, at 95% confidence interval (CI) for 287 ProMED-mail postings on 18 outbreaks across 14 countries over a 366 day period. Results indicate that W2 had the best F1 with a slight benefit for day of week effect over C2. In drill down analysis we indicate issues arising from the granular choice of country-level modeling, sudden drops in reporting due to day of week effects and reporting bias. Automatic alerting has been implemented in BioCaster available from http://born.nii.ac.jp. Online health news alerts have the potential to enhance manual analytical methods by increasing throughput, timeliness and detection rates. Systematic evaluation of health news aberrations is necessary to push forward our understanding of the complex relationship between news report volumes and case numbers and to select the best performing features and algorithms.
    Journal of biomedical semantics. 01/2010; 1(1):2.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have suggested that epidemiological reasoning needs a fine-grained modelling of events, especially their spatial and temporal attributes. While the temporal analysis of events has been intensively studied, far less attention has been paid to their spatial analysis. This article aims at filling the gap concerning automatic event-spatial attribute analysis in order to support health surveillance and epidemiological reasoning. In this work, we propose a methodology that provides a detailed analysis on each event reported in news articles to recover the most specific locations where it occurs. Various features for recognizing spatial attributes of the events were studied and incorporated into the models which were trained by several machine learning techniques. The best performance for spatial attribute recognition is very promising; 85.9% F-score (86.75% precision/85.1% recall). We extended our work on event-spatial attribute recognition by focusing on machine learning techniques, which are CRF, SVM, and Decision tree. Our approach avoided the costly development of an external knowledge base by employing the feature sources that can be acquired locally from the analyzed document. The results showed that the CRF model performed the best. Our study indicated that the nearest location and previous event location are the most important features for the CRF and SVM model, while the location extracted from the verb's subject is the most important to the Decision tree model.
    Journal of biomedical semantics. 01/2010; 1(1):3.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research on specialized biological systems is often hampered by a lack of consistent terminology, especially across species. In bacterial Type IV secretion systems genes within one set of orthologs may have over a dozen different names. Classifying research publications based on biological processes, cellular components, molecular functions, and microorganism species should improve the precision and recall of literature searches allowing researchers to keep up with the exponentially growing literature, through resources such as the Pathosystems Resource Integration Center (PATRIC, patricbrc.org). We developed named entity recognition (NER) tools for four entities related to Type IV secretion systems: 1) bacteria names, 2) biological processes, 3) molecular functions, and 4) cellular components. These four entities are important to pathogenesis and virulence research but have received less attention than other entities, e.g., genes and proteins. Based on an annotated corpus, large domain terminological resources, and machine learning techniques, we developed recognizers for these entities. High accuracy rates (>80%) are achieved for bacteria, biological processes, and molecular function. Contrastive experiments highlighted the effectiveness of alternate recognition strategies; results of term extraction on contrasting document sets demonstrated the utility of these classes for identifying T4SS-related documents.
    PLoS ONE 01/2011; 6(3):e14780. · 3.73 Impact Factor

Full-text (2 Sources)

View
227 Downloads
Available from
May 16, 2014

Mika Shigematsu