Conference Paper

An Application-Level Dependability Analysis Framework for Embedded Systems.

DOI: 10.1109/DFT.2011.25 Conference: 2011 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, DFT 2011, Vancouver, BC, Canada, October 3-5, 2011
Source: DBLP

ABSTRACT This paper presents a framework for an in-depth analysis of transient faults in microprocessor-based embedded systems. The framework is based on a debug-like mechanism supporting an interpretation and analysis of the system behavior from an application point of view, in terms of function execution flow and passed/returned parameters. The framework offers a highly-customizable fault/error debug and classification approach, based on such application-level information, aimed at supporting the designer in the evaluation and tuning of the system dependability-related properties. We present an implementation of the proposed framework within a state-of-the-art fault injection environment for SystemC transaction-level multiprocessor specifications, and we show that the approach can be ported also in other environments. An experimental session considering an embedded system based on a processor highlights the benefits of the proposed approach.

0 Bookmarks
 · 
34 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To support the reliability assessment of safety-relevant distributed automotive systems and reduce its complexity, this paper presents a novel approach that extends virtual prototyping towards error effect simulation. Besides the common functional and timed system simulation, error injection is used to stress error tolerance mechanisms. A quantitative assessment of the overall system reliability is performed by observing the system reactions and identifying incorrect system behavior. To foster the industrial application, the analysis is integrated in a model-based design flow, starting at the modeling level to assemble and parameterize the virtual prototype and to configure the analysis. The feasibility of the proposed approach is demonstrated by analyzing a representative safety-relevant automotive use case.
    ASP-DAC; 01/2013