Conference Paper

A Quantitative Vascular Analysis System for Evaluation of Atherosclerotic Lesions by MRI.

DOI: 10.1007/3-540-45468-3_94 Conference: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2001, 4th International Conference, Utrecht, The Netherlands, October 14-17, 2001, Proceedings
Source: DBLP

ABSTRACT An analysis package called QVAS (quantitative vascular analysis system) is presented for the evaluation of atherosclerotic
arterial lesions visualized in vivo by magnetic resonance imaging. QVAS permits interactive identification of vessel and lesion
boundaries, segmentation of tissue classes within the lesion, quantitative analysis of lesion features, and three dimensional
display of lesion structure. The performance of QVAS is demonstrated using images of carotid artery lesions.

0 Followers
 · 
114 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The importance of plaque component classi .cation and vessel wall quantification has been well established by several research groups (see Refs. [1–30]).
    04/2007: pages 451-530;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The last technological advances of multi-detector computed tomography (MDCT) have brought significant improvements in image quality and consequently diagnostic performance. It opens, in particular, new perspectives for the coronary artery disease assessment. This paper presents a method for the coronary artery extraction and the lesion quantification. It makes use of a two stage-process. A tracking algorithm of the vascular structure, based on a 3D geometric moment operator, is first applied to estimate the vessel central axis location and its local diameter. It led to the extraction of the overall coronary tree. A deformable model technique, using a modified version of 3D level set technique, is then run on pathological vascular segments to refine the delineation of the wall and parietal calcifications. Parameters such as the narrowing or enlargement ratio of the vascular lumen, the minimum/maximum areas and the percent-area stenosis or aneurysm, are then computed for diagnosis purpose. The first method was submitted to a clinical evaluation on six data sets that showed good sensitivity and specificity performances. The second one was validated by experts, through a visual inspection of 2D cross-sections and volume rendering.RésuméLes avancées technologiques, réalisées ces dernières années sur le scanner, ont inféré de manière significative sur la qualité des images et par voie de conséquence sur la qualité du jugement diagnostic. Elles ouvrent aujourd'hui de nouvelles perspectives sur l'évaluation des maladies des artères coronaires. Néanmoins, des algorithmes doivent être développés pour faciliter la détection et la quantification des pathologies vasculaires. La méthode décrite dans ce papier, réalise l'extraction des artères coronaires et la quantification des plaques calcifiées. Cette méthode procède en deux temps : un premier algorithme de suivi de la structure vasculaire, s'appuyant sur un opérateur moment géométrique 3-D, est appliqué pour estimer localement la position de l'axe central du vaisseau et son diamètre. Il permet d'extraire l'arbre coronarien dans sa globalité. Un modèle déformable exploitant une technique de level-set 3-D est ensuite appliqué localement sur les segments calcifiés pour améliorer la délinéation de la paroi coronaire et des calcifications pariétales. Un certain nombre de paramètres sont ensuite calculés à des fins diagnostiques : taux de rétrécissement/d'élargissement de la lumière vasculaire, surface minimale/maximale et pourcentage de sténose/d'anévrisme. La première méthode a été soumise à une première évaluation clinique attestant de bonnes performances en termes de sensibilité et spécificité, la seconde a été validée par des experts à travers une évaluation visuelle des résultats présentés sous forme de coupes 2-D et de rendu volumique.
    ITBM-RBM 11/2006; DOI:10.1016/j.rbmret.2007.01.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: A guided review process to support manual coronary plaque detection in computed tomography coronary angiography (CTCA) data sets is proposed. The method learns the spatial plaque distribution patterns by using the frequent itemset mining algorithm and uses this knowledge to predict potentially missed plaques during detection. Plaque distribution patterns from 252 manually labeled patients who underwent CTCA were included. For various cross-validations a labeling with missing plaques was created from the initial manual ground truth labeling. Frequent itemset mining was used to learn the spatial plaque distribution patterns in form of association rules from a training set. These rules were then applied on a testing set to search for segments in the coronary tree showing evidence of containing unlabeled plaques. The segments with potentially missed plaques were finally reviewed for the existence of plaques. The proposed guided review was compared to a weighted random approach that considered only the probability of occurrence for a plaque in a specific segment and not its spatial correlation to other plaques. Guided review by frequent itemset mining performed significantly better (p < 0.001) than the reference weighted random approach in predicting coronary segments with initially missed plaques. Up to 47% of the initially removed plaques were refound by only reviewing 4.4% of all possible segments. The spatial distribution patterns of atherosclerosis in coronary arteries can be used to predict potentially missed plaques by a guided review with frequent itemset mining. It shows potential to reduce the intra- and inter-observer variability.
    International Journal of Computer Assisted Radiology and Surgery 05/2009; 4(3):263-71. DOI:10.1007/s11548-009-0290-5 · 1.66 Impact Factor